Quadrant II – Transcript and Related Materials

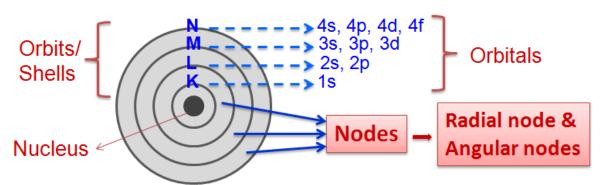
Programme: Bachelor of Science (First Year)

Subject: Chemistry

Paper Code: CHC-101

Paper Title: Inorganic Chemistry and Organic Chemistry (Section A)

Unit: 1 (Atomic Structure)

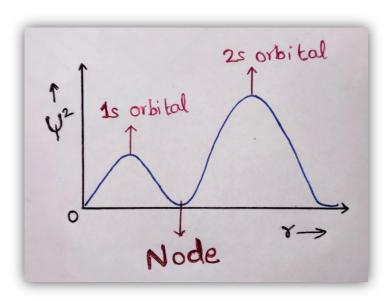

Module Name: Radial and Angular Nodes

Module No: 09

Name of the Presenter: Dr. Rita N. Jyai

Notes

Nodes in an atom: The region at which the probability of finding an electron is **zero** is called as a **node**.

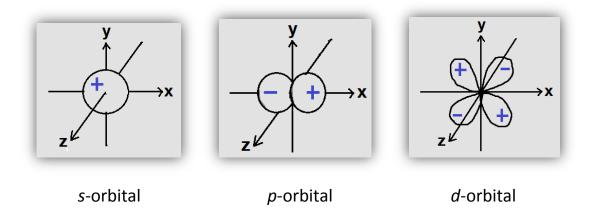

Note: Nucleus is not considered as node.

Orbital representation using wave function

$$\Psi = R_{n\ell}(r) \qquad X \qquad Y_{\ell m}(\theta,\varphi)$$

$$\downarrow \qquad \qquad \downarrow$$
 Radial wave function Angular wave function
$$Size \qquad Shape$$

Where, r, θ , ϕ = Polar coordinates.


- ightharpoonup The value of Ψ^2 gives electron density distribution.
- \triangleright When $\Psi^2 = 0$, we get the node i.e., R(r) and/or Y = 0

Node for 2s orbital

Dependence of orbitals on r, θ , ϕ

- The **radial part (R)** of the wave function ψ is always positive as **r** (radius) has to be positive.
- \triangleright The **angular part (Y)** of the wavefunction ψ may be positive or negative depending on **θ** and **φ** (angles).

Radial Nodes

- > It occur where the radial component R(r) of the wave function passes through zero i.e., probability of finding an electron here is zero. R(r) = 0
- ➤ These regions are described as **radial nodes** or **spherical radial nodes** since it has fixed radius and depicts their size.
- The number of radial node is determined by principal quantum number (n).

Angular Nodes

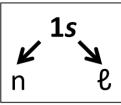
- ➤ It occur where the angular component **Y** of the wave function passes through zero. **Y** = **0**
- These regions are described as angular nodes or nodal planes (if planar) and can be conical as well. They have fixed angles.
- ➤ The number of angular nodes is determined by the azimuthal quantum number (ℓ).

Significance of Radial and Angular nodes

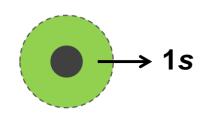
- Radial wavefunction gives the size.
- The number of radial node increases with principal quantum number (n).
- Angular part determines its shape.

- ➤ Angular node is equal to azimuthal quantum number (ℓ).
- From n and ℓ , the number of nodes is derived and the type of node (radial and/or angular) is determined.

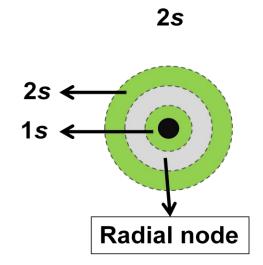
The number and type of nodes for an orbital

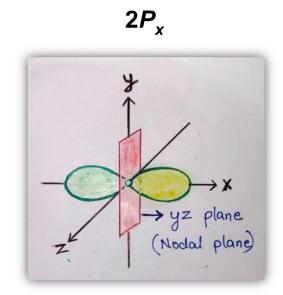

- > Total number of nodes = n 1
- \triangleright The number of angular nodes = ℓ
- > The number of radial nodes

Or


n-3 (for nd orbital); n-4 (for nf orbital)

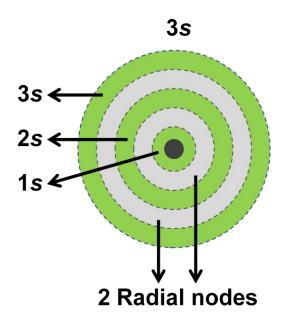
Calculating number of nodes, type of nodes and diagrammatical representation of nodes for first, second and third orbital

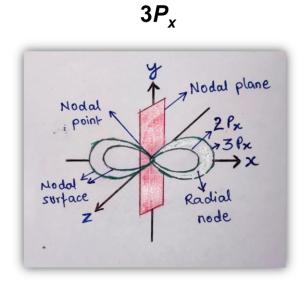

Orbital	No.	of	Angular	Radial Nodes		Type	of
	nodes		nodes	Method I	Method II	node	
1 st shell	(n-1)		(4)	(n-1-ℓ)	(n-1/2/3)		
1s	1-1=0		0	1-1-0= 0	(ns)	Zero nod	es
n=1, ℓ=0					1-1= 0		

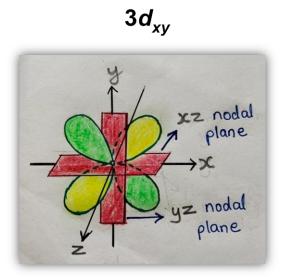


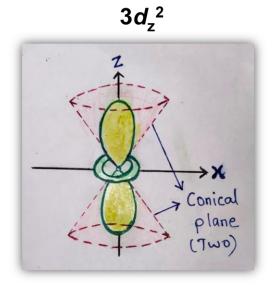
$$\ell = 0 (s);$$

 $1 (p);$
 $2 (d);$
 $3 (f)$




Orbita	No. of	Angular	Radial Nodes		Type of
	nodes	nodes	Method I	Method II	node
2 nd shell	(n-1)	(4)	(n-1-ℓ)	(n-1/2/3)	
2s	2-1= 1	0	2-1-0= 1	(ns)	1 Radial
n=2, ℓ=0				2-1= 1	node
2 <i>p</i>	2-1= 1	1	2-1-1= 0	(n <i>p</i>)	1 Angular
n=2, ℓ=1				2-2= 0	no





Orbital	No. of	Angular	Radial Nodes		Type of
	nodes	nodes	Method I	Method II	node
3 rd shell	(n-1)	(4)	(n-1-ℓ)	(n-1/2/3)	
3 <i>s</i>	3-1= 2	0	3-1-0= 2	(ns)	2 Radial
n=3, ℓ=0				3-1= 2	node
3 <i>p</i>	3-1= 2	1	3-1-1= 1	(n <i>p</i>)	1 Radial +
n=3, ℓ=1				3-2= 1	1 Angular
					node
3 <i>d</i>	3-1= 2	2	3-1-2= 0	(n <i>d</i>)	2 Angular
n=3, ℓ=2				3-3= 0	node

SUMMARY

- Nodes are points/planes of zero electron density.
- > Radial nodes determines the size of the orbital.
- Radial nodes are spherical in shape.
- > Angular nodes determines the shape of the orbital.
- Angular nodes are planar/conical.