Programme: Bachelor of Science

Subject: Chemistry

Semester: |

Course Code: CHC 101

Course Title: Inorganic and Organic Chemistry Section B

DISHTAVO DIS

Title of the unit: Alkanes Alkenes and Alkynes

Module Name: Dehydrohalogenation of Alkyl Halides

Pearl Dos Santos, M.Sc.

Assistant Professor

Carmel College for Women,

Nuvem Goa

OUTLINE

- Dehydrohalogenation of Alkyl halides
- Saytzeff's Rule
- Mechanistic pathway for dehydrohalogenation (E1/E2)

LEARNING OUTCOMES

- Understand dehydrohalogenation of Alkyl halides
- Apply Saytzeff's Rule
- Understand the mechanistic pathway for dehydrohalogenation (E1/E2)

Alkenes can be obtained from **alkyl halides** by the **loss of hydrogen halide** in the presence of base.

DISHTAVO DIS

DEHYDROHALOGENATION OF ALKYL HALIDES

Unsymmetrical alkenes

Major product explained by Saytzeff's rule

Saytzeff's Rule

Alkene is obtained when a proton is removed from the β -carbon that is bonded to the fewest number of hydrogen atoms.

 $CH_2 = CHR < RCH = CHR < R_2C = CHR < R_2C = CR_2$

Mono < di < Tri < Tetra

□ The most substituted product would be the most stable and most preferred one.

Thus the reaction is regioselective.

Conjugated Alkenes preferred

Influence of Steric hindrance

DISHTAVO DIS

Effect of steric properties of base on the distribution of product

The E2 mechanism

Key Points:

 \Box Rate depends on the alkyl halide as well as base \Box bimolecular.

□ 2nd order kinetics

Rate depends on the abstraction of proton and cleavage of C-X bond.

Order of reactivity of different halogens CI > Br > I

□Concerted mechanism□ 1 step

The E2 mechanism

The E1 mechanism

□Some 2° and 3° alkyl halides □ elimination in a solution of low base concentration.

Unimolecular.

□2 step mechanism.

Rate depends only on the substrate (Alkyl halide) depends on cleavage of C-X bond

Reactivity of halogen I>Br>CI

Reactivity of Alkyl halides 3° and some 2° alkyl halides

References

- Boyd, Robert N., and Robert T. Morrison. Organic Chemistry. seventh ed., Pearson, 2010
- Francis Carey, Organic Chemistry; 3rd Edition, Tata McGraw Hill India
- •, R.L. Madan Chemistry for degree students; CBCS, S. Chand

