Quadrant II – Transcript and Related Materials

Programme: Bachelor of Science (Second Year)

Subject: Chemistry

Course Code: CHC103

Course Title: Physical and Organic Chemistry (Section B)

Unit: UV-Visible Spectroscopy in Organic Chemistry

Module Name: Woodward - Fieser Calculations of λ_{max} : α,β -unsaturated carbonyls

Name of the Presenter: Dr. Mira V. Parmekar

Notes

Introduction

- In 1945 Robert Burns Woodward gave certain rules for correlating λ_{max} with molecular structure which in 1959, were modified by Louis Frederick Fieser with the help of more experimental data.
- These modified rules are known as Woodward-Fieser Rules.
- It is used to calculate the position and λ_{max} for a given structure by relating the position and degree of substitution of chromophore.

DISHTAVO DIS

Woodward – Fieser Rules

Each α , β -unsaturated carbonyl system has a certain fixed value at which absorption takes place; this constitutes the Base value or Parent value. The contribution made by various alkyl substituents or ring residue, double bond extending conjugation and polar groups such as -Cl, -Br etc are added to this basic value to obtain λ_{max} for a particular compound.

2. Increments

Auxochromes

- **2.** Alkyl substituent or Ring residue in α position = 10 nm
- 3. Alkyl substituent or Ring residue in β position = 12 nm
- 4. Alkyl substituent or Ring residue in γ and higher positions = 18 nm
- 5. Double bond extending conjugation = 30 nm
- 6. Exocyclic double bonds = 5 nm
- 7. Homodiene compound = 39 nm

Summary

- Robert Burns Woodward and Louis Frederick Fieser gave certain rules for correlating λ_{max} with molecular structure known as Woodward-Fieser Rules, used to calculate the position and λ_{max} for a given structure by relating the position and degree of substitution.
- Each conjugated enone system has a certain fixed value at which absorption takes place. The contribution made by various substituents or ring residue, etc. are added to this basic value to obtain λ_{max} for a particular α , β -unsaturated carbonyl compound.
- Extended conjugation always results in Bathochromic shifts.