Ouadrant II- Notes

Programme: Bachelor of Science

Subject: Chemistry

Paper code: CHD 105

Paper Title: Properties and Processes of Molecular Chemistry

Unit: 02

Module Name: Measurement of Magnetic Susceptibility by Quincke's

method

Module No.: 05

Name of the presenter: Ms. Sneha V. Parab

Magnetic Susceptibility:

 It is a measure of how much a material will become magnetized when placed in an applied magnetic field.

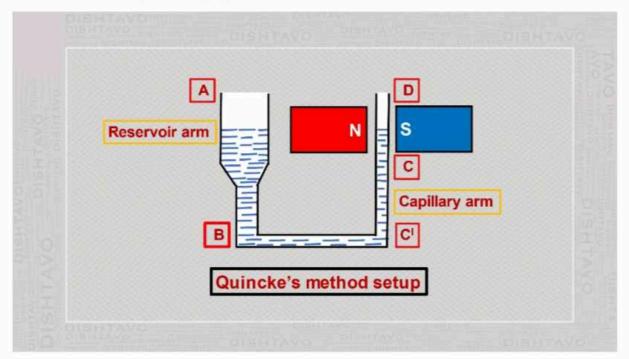
Experimental methods for the determination of Magnetic Susceptibility:

- Various methods are used for the measurement of magnetic susceptibility can be grouped under two main heads:
- (a) Non-uniform field methods.
- (b) Uniform field methods.

One of the uniform field methods for determination of magnetic susceptibility is **Quincke's method**.

Determination of Magnetic Susceptibility (χ) by Quincke's method:

- In 1885, Quincke's adopted a method for susceptibility measurements strictly suitable for liquids, aqueous solutions and some liquified gases.
- Example of liquid samples: MnSO₄, FeCl₃ solution


· It is a uniform magnetic field method.

Principle:

- The magnetic field exerted on the liquid sample, when placed in the magnetic field varies directly as its mass.
- The force acting on the liquid sample is measured in terms of hydrostatic pressure.
- When field is applied, the meniscus will fall if the liquid is diamagnetic or will rise if the liquid is paramagnetic.

Apparatus:

- This apparatus makes use of specially designed U tube (ABC^ICD).
- The wider arm acts as a reservoir for the liquid from where the liquid is filled in the apparatus.
- The limb C'D is a capillary tube placed in a uniform magnetic field of strength 25,000 Oersted.
- The field near the wider end of the tube (end C^I) is 50-100 Oersted which is quite negligible.

Procedure:

- 1. The liquid is filled in the tube through the reservoir arm.
- The initial level of the liquid is recorded.
- 3. The liquid meniscus will rise if the liquid sample is paramagnetic.
- 4. The liquid level will fall if the liquid sample is diamagnetic.
- 5. The difference between initial and final height gives Δ h.

Theory:

- There are two mechanical forces acting on the sample:
- (i) The force acting on the body due to its permanent magnetism.
- (ii) The force due to induced magnetism.

The magnetic force acting on the sample is given by,

$$F_1 = \underline{1} (\kappa_1 - \kappa_2) \cdot (H_1^2 - H_2^2) \cdot A$$
 (1)

 κ_1 and κ_2 are volume susceptibilities of **liquid and the vapor above it** respectively.

H₁ and H₂ are the maximum and minimum field intensities

A is the area of cross-section of the sample.

In practice H₂ is made negligible by proper adjustments.

Thus equation (1) becomes,

$$F_1 = \underline{1} (\kappa_1 - \kappa_2) \cdot H_1^2 \cdot A$$

Suppose Δ h is the change in the height of the meniscus.

The corresponding hydrostatic pressure is given by,

$$p = \rho \cdot g \cdot \Delta h$$

But Force = pressure x area

Thus,
$$F_2 = \rho \cdot g \cdot \Delta h \cdot A$$
 (3)

Equating equation (2) and (3), we get,

$$ρ.g.Δh.A = 1 (κ1 - κ2).H12.A$$

Cancelling and rearranging the terms, we get,

$$\kappa_{1} - \kappa_{2} = \underline{2 \rho \cdot g \cdot \Delta h}$$

$$H_{1}^{2}$$

$$\underline{\kappa}_{1} - \underline{\kappa}_{2} \cdot \underline{\rho}_{0} = \underline{2 \cdot g \cdot \Delta h}$$

$$\rho \quad \rho_{0} \quad \rho \quad H_{1}^{2}$$

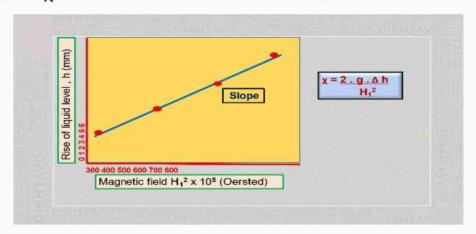
$$(4)$$

where ρ is the density of the liquid and ρ_0 is the density of the vapor.

Substitute $\underline{\kappa} = \chi = \text{mass susceptibility}$ in equation (4)

$$\chi - \chi_0 \cdot \underline{\rho}_0 = \underline{2 \cdot g \cdot \Delta h}$$

$$\rho \qquad H_1^2$$


where χ and χ_0 are the mass susceptibilities of liquid and vapor respectively.

Neglecting the mass susceptibility of the vapor, equation (5) becomes,

$$\chi = \underline{2 \cdot g \cdot \Delta h}$$

$$H_1^2$$

- So, by plotting h vs. H₁² we will get a straight line from whose slope = h/H₁² can be determined.
- Hence χ of the solution can be calculated.

Advantages:

- 1. No need to measure the density of the liquid separately.
- 2. The susceptibility of **liquid sample** can be measured with reference to **standard substance** under identical conditions.

$$\chi_S = (\underline{\Delta h})_S$$

 $\chi_r (\underline{\Delta h})_r$

$$\chi_S = \chi_r (\underline{\Delta h})_S (\underline{\Delta h})_r$$

- X s is magnetic susceptibility of liquid sample.
- · X r is magnetic susceptibility of reference substance