DIAMAGNETISM AND PARAMAGNETISM

Diamagnetic substances

- Atoms with paired electrons are called **diamagnetic.**
- Diamagnetic substances repel from the magnet.
- The resultant spin moment is **zero**.

Paramagnetic substances

- Atoms with unpaired electrons are called **paramagnetic**.
- Paramagnetic substances attract to the magnet.
- They have resultant spin moment.

LANGEVIN'S THEORY OF DIAMAGNETISM:

- Theory of diamagnetism was first worked out by Paul Langevin in 1905.
- Langevin applied the **electronic theory** to explain the magnetic behaviour of the substances.
- According to this theory, the atom of a diamagnetic substance is such that the **resultant magnetic moment of the atom as a whole is zero.**
- This is because the electrons are paired as +1/2 and -1/2 spin.

- When an **external field is applied** to such an atom, there occurs a **uniform processional motion (slow movement)** of electron orbits relative to each other.
- Thus, that atom as a whole possesses a negative magnetic moment but not zero.
- The magnetic moment per gram atom will be

Where $\Delta \mu$ is change in magnetic moment

e is electronic charge

- H is magnetic field strength
- Z is atomic number
- r is radius of electron circular orbit

m is mass of the electron moving in a circular orbit

 $\Delta \mu_A$ is change in magnetic moment of atom 'A'

N is the Avogadro's number

- LANGEVIN'S THEORY OF PARAMAGNETISM:
- Explained paramagnetic behaviour of substances on the basis of kinetic theory.
- He assumed that the molecules of paramagnetic substance contain permanent magnets due to rotating electrons.
- When placed in an external field they tend to orient themselves with their magnetic axis in the direction of the field.
- However, this tendency will be opposed by the collisions due to thermal motion between the molecules.
- As a result, there will be an equilibrium distribution of the axes with respect to the direction of the field.
- He further extended the theory to determine the number of unpaired electrons present in the compound with the use of following formula,

where χ_M is the molar susceptibility

 $\chi_{M} = N. \mu^{2}$. [(n(n+2)] 3KT

- N is Avogadro's number
- K is Boltzmann's constant
- **T** is Temperature
- **µ** is permanent magnetic moment
- n is number of unpaired electrons

	Tablet motal Cusceptibilities					
Paramagnetic	χ _M X 10 ⁻⁶	Diamagnetic	χ _M X 10 ⁻⁶			
Aluminium	+ 0.65	Bismuth	- 1.39			
Potassium	+ 0.52	Copper	- 0.09			
Air	+ 24.16	Water	- 0.72			
Oxygen	+3449.0	Hydrogen	- 4.00			
Ferrous Sulphate	+10,200.0	Ammonia	- 17.92			
Nickel Chloride	+6145.0	Carbon dioxide	- 21.00			
Cobalt Sulphate	+10,000.0	Carbon tetra chloride	- 66.36			
Nickel Oxide	+54.00	Hydrogen Sulphide	- 25.50			

Table: Molar Susceptibilities

INTERPRETATION OF PARAMAGNETIC PROPERTY OF OXYGEN AND NITRIC OXIDE MOLECULE

Aufbau's principle:

In the ground state of an atom or ion, **electrons** fill atomic orbitals of the lowest available energy levels before occupying higher levels.

Hund's rule: Every orbital in a sublevel is singly occupied before any orbital is doubly occupied.

For eg, Consider Carbon atom with atomic number = 06

correct		incorrect						
11	11	1	1	11	11	1		
1s ²	2s ²		2p ²	1s ²	2s ²	_	2p ²	

- 2. Nitric oxide molecule (Heteronuclear)
 - Paramagnetic in nature indicates that it must have unpaired electrons.
 - This can be explained by Molecular Orbital Theory.
 - Atomic orbital of Nitrogen and Oxygen atoms overlap to form σ and π orbitals.
 - **15 valence electrons** are added in the molecular orbital of Nitric oxide according to Aufbau principle.
 - Last electron goes into π^{2}_{2px} antibonding orbital according to Hund's rule.

- Nitric oxide shows paramagnetic property in gaseous state.
- In solid state, it shows diamagnetic property.
- It means that in solid state two odd electrons of two nitric oxide molecules go for inter-molecular spin coupling and give the formation of dimer structure.

