Quadrant III

Resource: Lecture notes

STEREO-ISOMERISM IN CO-ORDINATION COMPOUNDS

Compounds with the same formula but different arrangements of the atoms are called **isomers**.

STEREOISOMERS are those which have different orientations of Ligands around the central metal atom.

Co-ordination N	o. Geometry	Geometrical isomers	Optical isomers
4	Tetrahedral	Not possible	Possible, but rare
4	Square planar	Possible	Not possible
6	Octahedral	Possible	Possible

<u>Geometrical isomerism in complexes with coordination number 4, Square planar</u>

Compound type No. of isomers

1. Ma_2b_2 2 (cis- and trans-)

2

3

- 2. Ma_2bc
- 3. Mabcd
- 4. Unsymmetrical ligands 2

Note: cis-PtCl2(NH3)2 is an anti-cancer agent (cisplatin) whereas the transisomer is inactive against cancer (it is toxic), and so not useful in Chemotherapy.

1. Complex of the type Ma₂b₂

3- D Figure

In TRANS isomer two similar ligands occupy positions, 180 degree to each other. In the CIS isomer, two similar ligands occupy positions, 90 degree to each other.

2. Complex of the type Ma₂bc

3. Complex of the type Mabcd

4. Unsymmetrical Ligands, glycinate ligand

Q. Draw the cis and trans isomers of the following compounds: (NH₃)₂IrCl(CO) (H₃P)₂PtHBr

CO-ORDINATION NUMBER 6

Geometrical isomerism in complexes with coordination number 6:

i) Complexes with Monodentate ligands of type

[Ma₆], [Ma₅b] [Ma₄b₂], [Ma₃b₂c], [Ma₃b₃], [Ma₃bcd], [Ma₂b₂c₂] Co-ordination compounds, MA₆, MA₅B are possible, but their geometrical isomers do not exist because they exist in a single isomer form.

Compound type	No. of isomers
1. Ma_4b_2	2 (cis- and trans-)
2. Ma ₄ bc	2 (cis- and trans-)
3. Ma_3b_3	2 (fac- and mer-)
4. $M(AA)_{2}b_{2}$	3 (2*cis- and 1 trans-)
here a, and b, repre	sent monodentate ligands and AA is a bidentate
ligand.	

1. Octahedral Complexes containing only monodentate ligands a) $[Ma_4b_2]^{n\pm}$

MA₄B₂ octahedral complex, cis isomer

MA₄B₂ octahedral complex, trans isomer

e.g $[Co(NH_3)_4Cl_2]^+$, If both Cl ligands are same side i.e 1,2 then cis isomer formed. If both Cl are opposite to each other then trans isomer formed.

b) Complexes of type $[Ma3b3]^{n\pm}$: If the same ligands occupy adjacent positions (1,2 & 3) at the corners, known as **facial (fac)** isomer, when the positions are opposite (4,5 & 6)/ around the meridian of the octahedron, **meridional (mer)** isomer

Cis / facial / fac-isomer trans / meridional / mer-isomer

Write the Geometrical isomer of [Ru(Py)3Cl3].

2. Octahedral Complexes containing monodentate and symmetrical bidentate ligands

a) Complexes of type
$$[M(AA)_2b_2]^{n\pm}$$

Cis-isomer tr cis/trans form of [Co(en)₂Cl₂]⁺

```
trans-isomer
```

b) Complexes of type $[M(AA)2ab]^{n\pm}$

2+

ſ

c) Complexes of type $[M(AA)a_2b_2]^{n\pm}$

(iii) [Cr(NH₃)₂Cl₂(en]

CIS ISOMER

TRANS ISOMER

TRANS ISOMER

Write the above isomers.

OPTICAL ISOMERISM

Unpolarised: The light waves that have vibrations occurring within them at random angles without any plane.

Polarised light: The light waves that have vibrations occurring within them in a single plane.

Optical isomerism in complexes with coordination number 6: Complexes with Monodentate ligands of type [Ma₆], [Ma₅b], [Ma₄b₂], [Ma₃b₂c], [Ma₃b₃], [Ma₄bc], [Ma₂b₂c₂], [Mabcdef]

1. [Pt(NH₃)₂(py)₂Cl₂]²⁺ ion is an important example of octahedral complex of the **type** [Ma₂b₂c₂]

5 geometrical isomers by formula $Ma_2b_2c_2$

2. [Mabcdef] e.g

Pt(py)NH₃NO₂ClBr]

In order to show optical activity, molecule should not have any element of symmetry.

SYMMETRICAL BIDENTATE LIGANDS

a) Complex of type [M(AA)₃]

This complex do not have element of symmetry hence optically active & can resolve into'd' & 'l' isomers. E.g. [Cr(C2O4)3]3-, [Co(en)3]

b) Complex of type [M(AA)₂b₂]

b) Complex of type [M(AA)₂ab]: Co(en)₂NH₃Cl]²⁺

c) Complexes of type $[M(AA)a_2b_2]^{n\pm}$

(iii) [Cr(NH₃)₂Cl₂(en)]⁺

TRANS isomer is optically inactive

CIS isomer is optically active

References and Credits

1. Selected Topics in INORGANIC CHEMISTRY-for BSc (Hons) Dr. Wahid U. Malik et al. 8th Edition, S Chand publishing Co. Ltd.

2. Principles of INORGANIC CHEMISTRY – B.R. Puri, L.R.Sharma, K.C. Kalia, 33rd Edition, Vishal Publishing Co.