Quadrant II – Transcript and Related Materials

Programme: Bachelor of Science (Third Year)

Subject: Chemistry

Paper Code: CHC-106

Paper Title: Inorganic Chemistry (Section B)

Unit: 6 (Oxidation and Reduction)

Module Name: Redox stability in water

Name of the Presenter: Dr. Rita N. Jyai

Notes

Redox Stability in Water

- The stability of an ion or a molecule in a solution depends upon the solvent and on other solutes including oxygen that may be present in the solution.
- This is because the ion or the molecule may be destroyed by oxidation or reduction brought about by the solvent or by the other species present in the solution.
- ➢ For instance,

a) Metals such as Na, K, Ca, Sc, etc., get oxidised by water or H⁺ ions liberating hydrogen:

 $M_{(s)} + H_2O_{(l)} \rightarrow M^{+}_{(aq)} + \frac{1}{2} H_{2(g)} + OH^{-}_{(aq)}$ $M_{(s)} + H^{+}_{(aq)} \rightarrow M^{+}_{(aq)} + \frac{1}{2} H_{2(q)}$

b) And ions such as Co³⁺ get reduced by water liberating oxygen:

 $\mathrm{Co}^{3+}_{(aq)}$ + 2H₂O (I) \rightarrow $\mathrm{Co}^{2+}_{(aq)}$ + 4H⁺_(aq) + O_{2 (g)}

In simple words, we can say water can act as an oxidising agent as well as a reducing agent.

CASE I: Water as an Oxidant

(i.e., Oxidation of substances by H_2O and reduction of H_2O to H_2)

- > When H_2O act as an oxidant, it is reduced to H_2 .
- As a matter of fact the reduction of H_2O means the reduction of $H^+_{(aq)}$ ions to $H_{2(g)}$

$$H^+ + e^- \rightarrow \frac{1}{2} H_2$$

Reduction half – reaction

$$E_{H^{+}/\frac{1}{2}H_{2}} = E_{H^{+}/\frac{1}{2}H_{2}}^{o} + 0.0591 \log 1$$
[H⁺]
$$= 0 - 0.0591 \log [H^{+}]$$

E _{H⁺/ ¹/₂H₂ = - 0.0591 pH at 25^oC}

Example: Alkali or alkaline earth metals (except Be),

 $M + H_2O \rightarrow MOH + \frac{1}{2}H_2$ OR $M + H^+ \rightarrow M^+ + \frac{1}{2}H_2$

Metals of first transition series like Sc, Ti, V, Cr, Mn etc.

$$Sc + 3H^+ \rightarrow Sc^{3+} + \frac{1}{2}H_2$$

- Consider, the evolution of H₂ at an electrode on which hydrogen overvoltage is, say, 0.60 V.
- Since there is 0.60 V hydrogen overvoltage, E required for the liberation of H_2 would be a little more negative than 0.6591 V at pH = 1 and a little more negative than 0.6 V at pH = 0.
- This means that the species with redox potentials more negative than -0.6591 V at pH=1.
- As, for example, Na (E = -2.71 V), Ca (E = -2.87 V), Li (E = -3.04 V), would get oxidised by water or H^+ ions with the evolution of H.

CASE II: Water as a Reductant

(i.e., Reduction of substances by H_2O and Oxidation of H_2O to O_2)

When H_2O acts as a reductant, it is oxidised to O_2 .

 $2H_2O \rightarrow 4H^+ + O_2$, $E^{\circ}_{ox} = -1.23 V$

If this oxidation half-reaction is written as reduction half-reaction, then we get:

$$4H^{+} + O_2 + 4e^{-} \rightarrow 2H_2O$$
, $E^{\circ}_{red} = +1.23 V$

For this reduction half-reaction, $E = E^{\circ}_{red} - 0.0591 \text{ pH}$

At pH 0, E = 1.23 - 0.0591 x 0 = 1.23V

Example: When F_2 reacts with H_2O , F_2 is reduced to F^- ion and H_2O is oxidised to O_2 .

 $2F_2 + 2H_2O \rightarrow 4F^- + 4H^+ + O_2$

$$(F=0)$$
 $(O = -2)$ $(F=-1)$ $(O = 0)$

 $\rm H_2O$ also reduces $\rm Co^{3+}$ to $\rm Co^{2+}$ and $\rm Ce^{4+}$ to $\rm Ce^{3+}$

$$4Co^{3+} + 2H_2O \rightarrow 4Co^{2+} + 4H^+ + O_2$$
$$4Ce^{4+} + 2H_2O \rightarrow 4Ce^{3+} + 4H^+ + O_2$$

- Let us consider the liberation of O₂ at an electrode on which oxygen overvoltage is, say, 0.27 V.
- Since, there is 0.27 V oxygen overvoltage, E required for the liberation of O₂ would be higher than 1.5 V.
- This means that species with redox potentials higher than +1.5 V at pH = 0.
- > As, for example, Co^{3+} (E = +1.82 V) and C^{4+} (E = +1.71 V), would get reduced by water which itself gets oxidised to O₂.

CASE III: Disproportionation Reactions

- It is a redox reaction in which the oxidation number (O.N.) of an element increases as well as decreases simultaneously.
- This leads to the formation of two products one of which has the element in lower oxidation state and the other product has the element in higher oxidation state.
- In other words the species which undergoes disproportionation acts as an oxidant as well as a reductant.
- Example: Cu⁺ acts as an oxidant as well as a reductant

$$2Cu^+ \rightarrow Cu^{2+} + Cu^0$$
(Cu = +1) (Cu = +2) (Cu = 0)

The two half-reactions are

Cu⁺ → Cu²⁺ +
$$e^-$$
, E°_{ox} = -0.16 V
Cu²⁺ + e^- → Cu⁰, E°_{red} = +0.52 V
2Cu⁺ → Cu²⁺ + Cu⁰, E°_{redox} = +0.36 V

Since, E[°]_{redox} is positive, the disproportionation reaction is spontaneous.

Comproportionation Reactions

- These are simply the reverse of disproportionation reactions.
- In these reactions an element in its two different oxidation states combine together to form a product which has the element in intermediate oxidation state.
- > The following reaction is a spontaneous comproportionation reaction

$$Ag^{2+} + Ag^{0} \rightarrow 2Ag^{+}$$
 (E° = +1.18 V)

Auto-oxidation

- It is a process in which a substance undergoes oxidation and reduction both by itself.
- It may be noted that in disproportionation reaction the same thing happens but in case of auto-oxidation this reaction occurs slowly without the action of heat, light or electricity.

 $3 \text{ HNO}_2 \rightarrow \text{ HNO}_3 + 2\text{ NO}$ (N = +3) (N = +5) (N = +2)

Summary

- The compounds may evolve H₂ by reacting with H₂O. In these reactions the compounds are oxidised by H₂O and H₂O itself is reduced to H₂. Thus, in these reactions H₂O acts as on oxidising agent.
- The compounds may evolve O₂ by reacting with H₂O. In these reactions the compounds are reduced and H₂O itself is oxidised to O₂. Thus, in these reactions H₂O acts as a reducing agent.
- The compounds may undergo disproportionation forming compounds of higher and lower oxidation states.