Quadrant II – Transcript and Related Materials

Programme	: Bachelor of Science (Third Year)
Subject	: Geology
Paper Code	: GEC 107
Paper Title	: Igneous Petrology
Unit	:1
Module Name	: Textures in Igneous Rocks - I
Module No	: 16
Name of the Presenter	: Ms. Yogita Karkhanis

Notes:

Texture in Igneous Rocks

- Texture is defined as the intimate mutual relation of the mineral constituents and glassy matter in rock made up of a uniform aggregate
- It is best studied in thin section under the microscope.
- An accurate description of igneous textures requires consideration of four points:
 - (a) degree of crystallization or crystallinity;
 - (b) absolute size of the crystals (the grain) or granularity;
 - (c) shape of the crystals;
 - (d) mutual relationship of crystals.
- The texture of an igneous rock may, therefore, be regarded as a function of its crystallinity, granularity and fabric.

Crystallinity

- It is measured by the ratio subsisting between the crystallized and noncrystallized matter.
 - A rock composed entirely of crystals is said to be *holocrystalline*;
 - When it consists wholly of glass, the term *holohyaline* is used; and
 - When the rock is composed partly of crystals and partly of glass, *hemicrystalline* have been used.
- Holocrystalline texture is noted in plutonic as well as hypabyssal rocks.
- The hemicryatalline/hypocrystalline is common in most volcanic rocks.
- While holohyaline types are exhibited by volcanic rocks due to sudden cooling.

Granularity

- The absolute size of crystals in igneous rocks ranges from almost submicroscopic dimensions to crystals measurable in yards.
- If crystals are visible to the naked eyes or with the aid of a pocket lens, the rock is said to be a *phenocrystalline* or *phaneric*.
- If, on the other hand, the individual crystals cannot be distinguished in this way, the term *aphanitic* is used.
- Phaneric rocks:
 - **Coarse** grained Average diameter > 5 mm → **Plutonic**
 - Medium grained Average diameter 5 mm to 1 mm → Hypabyssal
 - Fine grained Average diameter $< 1 \text{ mm} \rightarrow$ Volcanic

Shape of crystals

- The fabric or pattern of a rock depends on the shape, and on the relative sizes and arrangement of the crystals.
 - Euhedral when the crystal exhibits well formed faces;
 - Anhedral when crystal faces are absent.
 - Subhedral sometimes used for an intermediate stage of development.
- Crystal shapes may also be described with reference to their relative dimensions in three directions.
- Equidimensional crystals-those which are more or less equally developed in all directions; e.g. garnet.
- Tabular- Crystals better developed in two spatial directions than in third; e.g. micas.
- Prismatic- Crystals better developed in one direction than the other two;
 e.g. hornblende.

