
Module 03 : The ingredients of computation; Functional decomposition

Notes

The Ingredients of Computation

Three forces are at play when we use software to perform some

computations:

• Processors : The processors are the computation devices, physical or virtual, that

execute instructions.

• A processor can be an actual processing unit (the CPU of a computer)

• A process on a conventional operating system

• A “thread” if the OS is multi-threaded.

• Actions : The actions are the operations making up the computation.

They are

• Machine language operations at the hardware level

• Programming language at the hardware software machine level

• Steps of an algorithm at the software level.

• Objects : The objects are the data structures to which the actions apply.

• Some objects, are internal data structures that exist only while the

computation proceeds

• Others are external and may outlive individual computations

Functional Decomposition

Functional decomposition is a method of analysis that dissects a complex process in order to

examine its individual elements. A function, in this context, is a task in a larger process

whereby decomposition breaks down that process into smaller, easier to comprehend units.

It is the process of taking a complex process and decomposing into its smaller, simpler parts

based upon the functionality.

It is used to describe a set of steps in which they break down the overall function of a

device, system, or process into its smaller parts that describes the problem and or solutions

in increasing detail

Top Down Approach

A top-down approach (also known as stepwise design and stepwise refinement and in some

cases used as a synonym of decomposition) is essentially the breaking down of a system to

gain insight into its compositional sub-systems in a reverse engineering fashion.

• The top-down approach builds a system by stepwise refinement, starting with a

definition of its abstract function.

• We start the process by expressing a topmost statement of the function and

continue with a sequence of refinement steps.

• Each step must decrease the level of abstraction of the elements obtained.

• It decomposes every operation into a combination of one or more simpler

operations, until everything is at a level of abstraction low enough to allow direct

implementation.

Problems with the Top Down Approach

• It is has severe scalability issues when it comes to large software.

• There's a certain trade-off over short-term convenience for long term inflexibility.

• Unduly privileging some functions over the others.

• Diversion of attention to minor issues at the expense of more fundamental

properties.

• Sacrificing reusability aspect.

