Quadrant II – Transcript and Related Materials

Programme: F.Y.B.Sc. (Chemistry)

Subject: Chemistry

Course Code: CHC 102 Section B

Course Title: Physical Chemistry and Organic Chemistry

Unit: 03- Alcohols

Module Name: Alcohols: Reactions

Module No: 13

Name of the Presenter: Ms. Anuja B. Naik

Notes

Transcript of the video

Hello students, I am Ms. Anuja Naik from Ganpat Parsekar College of Education, Harmal, Pernem Goa and I will be dealing with Aryl halides -Reactions (Chlorobenzene)-Nucleophilic Aromatic Substitution (replacement by -OH group).

The lecture deals with,

Reactions of Alcohols

- Reaction with sodium
- Reaction with Hydrogen Halides (Lucas test)
- Reaction with carboxylic acids (Esterification reaction)
- Oxidation reactions with PCC, alk.KMnO₄, acidic dichromate, conc. HNO₃
- Oppeneaur oxidation

So, at the end of the lecture, the student will be able to:

Learn different Reactions of Alcohols

• Reaction with sodium

- Reaction with Hydrogen Halides (Lucas test)
- Reaction with carboxylic acids (Esterification reaction)
- Oxidation reactions with PCC, alk.KMnO₄, acidic dichromate, conc. HNO₃
- Oppeneaur oxidation

Reaction with sodium

Alcohols react with Na to liberate hydrogen gas. The product formed is alkoxide.

2 RO-H	+ 2 Na-	$\rightarrow 2 \operatorname{RONa}^{+} + H$	2	
Alcohol		Sodium alkoxide		
2 CH ₃ CH ₂ OH Ethyl alcohol	+ 2 Na —	→ 2 CH ₃ CH ₂ O Na Sodium ethoxid	+ le	H ₂
2 CH ₃ OH Methyl elechel	+ 2 Na —	$\rightarrow 2 \text{ CH}_3 \overline{\text{ONa}}^+$	+	H ₂
Metnyi alcohol		Sodium methoxide		

Next, Reaction with Hydrogen Halides (Lucas test)

The reactions of alcohols with HX give 1° , 2° and 3° alkyl halides. This is Nucleophilic substitution reaction. And More substituted alcohols react more rapidly with HX i.e. 3° alcohol react faster then 2° alcohol then 1° alcohol.

The reactivity of hydrogen halides increases with increasing acidity. HI is more reactive then HBr and HCl. Because Cl^- is a poorer nucleophile than Br^- or I^- , the reaction of 1^0 alcohols with HCl occurs only when an additional Lewis acid catalyst like $ZnCl_2$, is added. $ZnCl_2$ complexes with the O atom of the alcohol in a Lewis acid –base reaction, making a good leaving group and facilitating the SN_2 reaction.

<u>Lucas test</u> This test helps to distinguish between primary, secondary and tertiary alcohols. In this test, alcohols are treated with a solution of HCl and $ZnCl_{2}$ (Lucas

reagent) to form alkyl halides, where $ZnCl_2$ serves as a catalyst. The alkyl chloride formed is insoluble which causes the solution to become cloudy before it separates as a distinct layer. The three types of alcohols undergo the reaction at different rates.

 3^{0} alcohols react with Lucas reagent rapidly. As a result cloudiness appears immediately. While 2^{0} alcohols react with Lucas reagent slowly. As a result cloudiness appears in 5 minutes. While 1^{0} alcohols react with Lucas reagent even more slowly. As a result solution remains clear.

Next, Reaction with carboxylic acids (Esterification reaction)

Alcohols react with carboxylic acids to form esters in the presence of conc. H_2SO_4 as a catalyst. Acid catalysed condensation of an alcohol and a carboxylic acid yields an ester and water. This reaction is known as Fischer esterification.

Next, Oxidation reactions

The oxidation of an alcohol involves the loss of one or more hydrogens (α -hydrogens) from the carbon bearing the –OH group. A primary alcohol contains

two α -hydrogens, and can either lose one of them to form an aldehyde or both of them to form a carboxylic acid. A secondary alcohol can lose its only α - hydrogen to form a ketone. A tertiary alcohol contains no α - hydrogens and is not oxidized. **PCC** is Pyridinium chlorochromate (C₅H₆NCrO₃Cl). It is a soluble complex of chromium trioxide (CrO₃) and pyridine in dilute HCl.It is a mild oxidizing agent which oxidises primary alcohol to aldehyde. It does not oxidize the aldehyde to

Alkaline KMnO₄ It is a strong oxidising agent which oxidises primary alcohols to carboxylic acids and secondary alcohols to ketone. In the course of reaction, the purple Mn (VII) is reduced to Mn (IV), which precipitates as brown manganese dioxide (MnO₂).

Acidic dichromate $(Na_2Cr_2O_7/H_2SO_4, K_2Cr_2O_7/H_2SO_4)$

These are strong oxidising agents which oxidise primary alcohols to carboxylic acids and secondary alcohols to ketone.

Conc. HNO₃ oxidises primary alcohols to carboxylic acids and secondary alcohols to ketone.

Oppenauer oxidation This is named after Rupert Viktor Oppenauer. This method selectively oxidises 2⁰ alcohols to ketones. The alcohol is heated with Al-isopropoxide in the presence of a hydrogen acceptor like acetone or

benzophenone. This oxidation is the reverse of Meerwein-Pondorf-Verley (MPV) reaction.

To summarise

- ✓ Reactions of alcohols with sodium give alkoxides and liberate hydrogen gas.
- ✓ Reactions of alcohols with HX give 1° , 2° and 3° alkyl halides.
- ✓ Lucas test helps to distinguish between primary, secondary and tertiary alcohols.
- ✓ Alcohols react with carboxylic acids to form esters in the presence of conc.H₂SO₄ as a catalyst.
- ✓ PCC is a mild oxidizing agent and does not oxidize the aldehyde to carboxylic acid.

- ✓ Alkaline KMnO₄ and Acidic Dichromate $(Na_2Cr_2O_7 / H_2SO_4)$, K₂Cr₂O₇ / H₂SO₄) are strong oxidising agents which oxidise primary alcohols to carboxylic acids and secondary alcohols to ketone.
- ✓ Conc. HNO₃ oxidises primary alcohols to carboxylic acids and secondary alcohols to ketone.
- ✓ Oppenauer oxidation method selectively oxidises 2⁰ alcohols to ketones in the presence of Al-isopropoxide and hydrogen acceptor like acetone or benzophenone.

Finally, these are the references.

Thank you.

Summary of the video (Abstract of the transcript)

Reactions of Alcohols

- Reaction with sodium
- Reaction with Hydrogen Halides (Lucas test)
- Reaction with carboxylic acids (Esterification reaction)
- Oxidation reactions with PCC, alk.KMnO₄, acidic dichromate, conc. HNO₃
- Oppeneaur oxidation

✓ <u>Reaction with sodium</u>

- Alcohols react with Na to liberate hydrogen gas.
- The product formed is alkoxide.

2 RO-H + 2 Na \rightarrow 2 RO Na + H₂ Alcohol Sodium alkoxide

2 CH₃CH₂OH + 2 Na
$$\longrightarrow$$
 2 CH₃CH₂O⁺Na⁺ + H₂
Ethyl alcohol Sodium ethoxide
2 CH₃OH + 2 Na \longrightarrow 2 CH₃O⁻Na⁺ + H₂
Methyl alcohol Sodium methoxide

Sodium methoxide

✓ <u>Reaction with Hydrogen Halides (Lucas test)</u>

- The reactions of alcohols with HX give 1° , 2° and 3° alkyl halides. •
- This is Nucleophilic substitution reaction. •

m-Methoxybenzyl alcohol

More substituted alcohols react more rapidly with HX. •

$$3^{\circ}$$
 alcohol > 2° alcohol > 1° alcohol

HBr CH₃CH₂OH CH₃CH₂Br H_2O + **1-Bromo ethane** Ethanol

m-Methoxybenzyl bromide

• The reactivity of hydrogen halides increases with increasing acidity.

- Because Cl⁻ is a poorer nucleophile than Br⁻ or I⁻, the reaction of 1⁰ alcohols with HCl occurs only when an additional Lewis acid catalyst like ZnCl₂, is added.
- ZnCl₂ complexes with the O atom of the alcohol in a Lewis acid –base reaction, making a good leaving group and facilitating the SN₂ reaction.

Lucas test

- This test helps to distinguish between primary, secondary and tertiary alcohols.
- In this test, alcohols are treated with a solution of HCl and ZnCl₂ (Lucas reagent) to form alkyl halides, where ZnCl₂ serves as a catalyst.
- The alkyl chloride formed is insoluble which causes the solution to become cloudy before it separates as a distinct layer.
- The three types of alcohols undergo the reaction at different rates.

<u>3º alcohols</u>	2º alcohols	<u>1º alcohols</u>	
React with	React with	React with	
Lucas reagent	Lucas reagent	Lucas reagent	
rapidly	slowly	even more	
		slowly	
Cloudiness	Cloudinass	Solution	
Cloudiness	Cloudiness	Solution	
appears	appears in 5	remains clear	
immediately	minutes		

✓ <u>Reaction with carboxylic acids (Esterification reaction)</u>

- Alcohols react with carboxylic acids to form esters in the presence of conc.H₂SO₄ as a catalyst.
- Acid catalysed condensation of an alcohol and a carboxylic acid yields an ester and water. This reaction is known as Fischer esterification.

✓ Oxidation reactions

- The oxidation of an alcohol involves the loss of one or more hydrogens (αhydrogens) from the carbon bearing the –OH group.
- A primary alcohol contains two α-hydrogens, and can either lose one of them to form an aldehyde or both of them to form a carboxylic acid.
- A secondary alcohol can lose its only α hydrogen to form a ketone.
- A tertiary alcohol contains no α hydrogens and is not oxidized.

a) PCC

- PCC is Pyridinium chlorochromate (C₅H₆NCrO₃Cl)
- It is a soluble complex of chromium trioxide (CrO₃) and pyridine in dilute HCl.
- It is a mild oxidizing agent which oxidises primary alcohol to aldehyde.It does not oxidize the aldehyde to carboxylic acid.

b) Alkaline KMnO₄

- It is a strong oxidising agent which oxidises primary alcohols to carboxylic acids and secondary alcohols to ketone.
- In the course of reaction, the purple Mn (VII) is reduced to Mn (IV), which precipitates as brown manganese dioxide (MnO₂).

- c) Acidic dichromate $(Na_2Cr_2O_7/H_2SO_4, K_2Cr_2O_7/H_2SO_4)$
- These are strong oxidising agents which oxidise primary alcohols to carboxylic acids and secondary alcohols to ketone.

d) Conc. HNO₃

• Conc. HNO₃ oxidises primary alcohols to carboxylic acids and secondary alcohols to ketone.

e) Oppenauer oxidation

- This is named after Rupert Viktor Oppenauer.
- This method selectively oxidises 2⁰ alcohols to ketones.
- The alcohol is heated with Al-isopropoxide in the presence of a hydrogen acceptor like acetone or benzophenone.
- This oxidation is the reverse of Meerwein-Pondorf-Verley (MPV) reaction.

