Programme	: S. Y. B. Sc.
Subject	: Computer Science
Semester	: IV
Paper Code	: CSC 104
Paper Title	: Computer Organization and Operating Systems
Unit 8	: Memory Management
Module Name	: Paging

Module Number : 31

Paging

- Paging is a memory management scheme that permits the physical address space of a process to be non contiguous.
- Paging is a fixed size partitioning scheme.
- In paging, secondary memory and main memory are divided into equal fixed size partitions.
- The partitions of secondary memory are called as pages.
- The partitions of main memory are called as frames.
- Each process is divided into parts where size of each part is same as page size.
- The pages of process are stored in the frames of main memory depending upon their availability.

Example

- Consider a process is divided into 4 pages P₀, P₁, P₂ and P₃.
- Depending upon the availability, these pages may be stored in the main memory frames in a non-contiguous fashion as shown-

P1	
P3	
P0	
P2	

Fig: Main memory

Translating Logical Address into Physical Address

- CPU always generates a logical address.
- A physical address is needed to access the main memory.

Following steps are followed to translate logical address into physical address :

<u>Step-01:</u>

- CPU generates a logical address consisting of two parts-
 - 1. Page Number
 - 2. Page Offset
- Page Number specifies the specific page of the process from which CPU wants to read the data.
- Page Offset specifies the specific word on the page that CPU wants to read.

<u>Step-02:</u>

• For the page number generated by the CPU, Page Table provides the corresponding frame number (base address of the frame) where that page is stored in the main memory.

<u>Step-03:</u>

- The frame number combined with the page offset forms the required physical address.
- Frame number specifies the specific frame where the required page is stored.
- Page Offset specifies the specific word that has to be read from that page.

The following diagram illustrates the steps of translating logical address into physical <u>address</u>

Advantages

The advantages of paging are-

- It allows to store parts of a single process in a non-contiguous fashion.
- It solves the problem of external fragmentation

Disadvantages

The disadvantages of paging are-

- It suffers from internal fragmentation.
- There is an overhead of maintaining a page table for each process.
- The time taken to fetch the instruction increases since now two memory accesses are required.

Example:

- If any process requires n pages then at least n frames are required.
- The first page of the process is loaded into the first frame that is listed on the freeframe list, and then the frame number is put into the page table.

