Quadrant II – Transcript and Related Materials

Programme	: Bachelor of Science (First Year)
Subject	: Physics
Paper Code	: PYC 102
Paper Title	: Heat & Thermodynamics and Properties of Matter
	& Acoustics
Unit 4	: Second Law of Thermodynamics
Module Name	: Thermodynamic scale of temperature & its identity
	with perfect gas scale
Module No	: 22
Name of the Presenter	: Mr. Yatin P. Desai

Notes

Thermodynamic Scale of Temperature:

It has been proved from Carnot's theorem that the efficiency of a Carnot's reversible engine is independent of the working substance but depends only on the temperature of the source and the sink. Lord Kelvin used this fact to construct the scale of temperature which is called thermodynamic scale or Kelvin scale or absolute scale of temperature. It is called absolute because it does not depend on the properties of any substance.

It is shown in the theory of Carnot's engine that the efficiency is given by;

$$\eta = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1} - \dots - \dots - \dots - \dots - (1)$$

As efficiency is a function of two temperatures only, we may write:

Where $\theta_1 \ and \ \theta_2$ are the temperatures measured on any arbitrary scale.

Consider three Carnot's engines working between temperatures; (i) θ_1 and θ_2 (ii) θ_2 and θ_3 (iii) θ_1 and θ_3 .

The first one taking heat Q_1 at temperatures θ_1 and rejecting heat Q_2 at temperature θ_2 , the second taking heat Q_2 at temperature θ_2 and rejecting heat Q_3 at temperature $\theta_{3;}$ and the third taking heat Q_1 at temperature θ_1 and rejecting heat Q_3 at temperature θ_3 .

Using equation (2);

$$\frac{Q_{1}}{Q_{2}} = f(\theta_{1}, \theta_{2}) - \dots - (a)$$

$$\frac{Q_{2}}{Q_{3}} = f(\theta_{2}, \theta_{3}) - \dots - (b)$$

$$\frac{Q_{1}}{Q_{3}} = f(\theta_{1}, \theta_{3}) - \dots - (c)$$
(3)

It follows from equation (3) that;

$$\frac{Q_1}{Q_3} = \frac{Q_1}{Q_2} \times \frac{Q_2}{Q_3}$$

i.e. $f(\theta_1, \theta_3) = f(\theta_1, \theta_2) \times f(\theta_2, \theta_3)$ ------(4)

This is possible only if the function 'f' is of the form;

$$f(\theta_1, \theta_2) = \frac{F(\theta_1)}{F(\theta_2)}$$

Thus, it follows from equation (2) that;

The function F increases with the heat taken in or rejected and can be taken as the measure of temperature. Kelvin called this as absolute temperature τ .

It is shown in the theory of Carnot's engine that:

Where T_1 and T_2 were temperatures measured on the ideal gas scale:

From equations (6) and (7), we see that;

Thus, the thermodynamic scale coincides with the ideal gas scale. From equation (7) we see that T_2 approaches zero as Q_2 tends to zero, that is the zero of the thermodynamic scale is that at which no heat is rejected to the cold reservoir. However, this is impossible as heat will be extracted only from the hot reservoir and all of it converted into work without affecting any other body which is in violation of the second law of thermodynamics hence it is impossible to produce absolute zero of temperature.