
Arduino - Overview

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and
software. It consists of a circuit board, which can be programmed (referred to as a
microcontroller) and a ready-made software called Arduino IDE (Integrated
Development Environment), which is used to write and upload the computer code to
the physical board.

The key features are −

 Arduino boards are able to read analog or digital input signals from different sensors and
turn it into an output such as activating a motor, turning LED on/off, connect to the cloud
and many other actions.

 You can control your board functions by sending a set of instructions to the microcontroller
on the board via Arduino IDE (referred to as uploading software).

 Unlike most previous programmable circuit boards, Arduino does not need an extra piece of
hardware (called a programmer) in order to load a new code onto the board. You can
simply use a USB cable.

 Additionally, the Arduino IDE uses a simplified version of C++, making it easier to learn to
program.

 Finally, Arduino provides a standard form factor that breaks the functions of the micro-
controller into a more accessible package.

Board Types

Various kinds of Arduino boards are available depending on different microcontrollers
used. However, all Arduino boards have one thing in common: they are programed
through the Arduino IDE.

The differences are based on the number of inputs and outputs (the number of
sensors, LEDs, and buttons you can use on a single board), speed, operating voltage,
form factor etc. Some boards are designed to be embedded and have no programming
interface (hardware), which you would need to buy separately. Some can run directly
from a 3.7V battery, others need at least 5V.

Here is a list of different Arduino boards available.

Arduino boards based on ATMEGA328 microcontroller

Board Name Operating
Volt

Clock
Speed

Digital
i/o

Analog
Inputs

PWM UART Programming
Interface

Arduino Uno R3
5V 16MHz 14 6 6 1

USB via
ATMega16U2

Arduino Uno R3
SMD

5V 16MHz 14 6 6 1
USB via

ATMega16U2

Red Board 5V 16MHz 14 6 6 1 USB via FTDI

Arduino Pro
3.3v/8 MHz

3.3V 8MHz 14 6 6 1
FTDI-Compatible

Header

Arduino Pro
5V/16MHz

5V 16MHz 14 6 6 1
FTDI-Compatible

Header

Arduino mini 05
5V 16MHz 14 8 6 1

FTDI-Compatible
Header

Arduino Pro
mini 3.3v/8mhz

3.3V 8MHz 14 8 6 1
FTDI-Compatible

Header

Arduino Pro
mini 5v/16mhz

5V 16MHz 14 8 6 1
FTDI-Compatible

Header

Arduino
Ethernet

5V 16MHz 14 6 6 1
FTDI-Compatible

Header

Arduino Fio 3.3V 8MHz 14 8 6 1
FTDI-Compatible

Header

LilyPad Arduino
328 main board

3.3V 8MHz 14 6 6 1
FTDI-Compatible

Header

LilyPad Arduino
simple board

3.3V 8MHz 9 4 5 0
FTDI-Compatible

Header

Arduino boards based on ATMEGA32u4 microcontroller

Board Name Operating
Volt

Clock
Speed

Digital
i/o

Analog
Inputs

PWM UART Programming
Interface

Arduino
Leonardo

5V 16MHz 20 12 7 1
Native USB

Pro micro
5V/16MHz

5V 16MHz 14 6 6 1
Native USB

Pro micro
3.3V/8MHz

5V 16MHz 14 6 6 1
Native USB

LilyPad
Arduino USB

3.3V 8MHz 14 6 6 1
Native USB

Arduino boards based on ATMEGA2560 microcontroller

Board
Name

Operating
Volt

Clock
Speed

Digital
i/o

Analog
Inputs

PWM UART Programming
Interface

Arduino
Mega 2560

R3
5V 16MHz 54 16 14 4

USB via
ATMega16U2B

Mega Pro
3.3V

3.3V 8MHz 54 16 14 4
FTDI-Compatible

Header

Mega Pro
5V

5V 16MHz 54 16 14 4
FTDI-Compatible

Header

Mega Pro
Mini 3.3V

3.3V 8MHz 54 16 14 4
FTDI-Compatible

Header

Arduino boards based on AT91SAM3X8E microcontroller

Board Name Operating
Volt

Clock
Speed

Digital
i/o

Analog
Inputs

PWM UART Programming
Interface

Arduino
Mega 2560

R3
3.3V 84MHz 54 12 12 4

USB native

Arduino - Board Description

we will learn about the different components on the Arduino board. We will study the
Arduino UNO board because it is the most popular board in the Arduino board family.
In addition, it is the best board to get started with electronics and coding. Some boards
look a bit different from the one given below, but most Arduinos have majority of these
components in common.

Power USB

Arduino board can be powered by using the USB cable from your computer. All you
need to do is connect the USB cable to the USB connection (1).

Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by
connecting it to the Barrel Jack (2).

Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino
board and stabilize the DC voltages used by the processor and other elements.

Crystal Oscillator

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino
calculate time? The answer is, by using the crystal oscillator. The number printed on
top of the Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000
Hertz or 16 MHz.

Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You
can reset the UNO board in two ways. First, by using the reset button (17) on the
board. Second, you can connect an external reset button to the Arduino pin labelled
RESET (5).

Pins (3.3, 5, GND, Vin)

 3.3V (6) − Supply 3.3 output volt

 5V (7) − Supply 5 output volt

 Most of the components used with Arduino board works fine with 3.3 volt and
5 volt.

 GND (8)(Ground) − There are several GND pins on the Arduino, any of which
can be used to ground your circuit.

 Vin (9) − This pin also can be used to power the Arduino board from an
external power source, like AC mains power supply.

Analog pins

The Arduino UNO board has six analog input pins A0 through A5. These pins can
read the signal from an analog sensor like the humidity sensor or temperature sensor
and convert it into a digital value that can be read by the microprocessor.

Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain
of your board. The main IC (integrated circuit) on the Arduino is slightly different from
board to board. The microcontrollers are usually of the ATMEL Company. You must
know what IC your board has before loading up a new program from the Arduino
IDE. This information is available on the top of the IC. For more details about the IC
construction and functions, you can refer to the data sheet.

ICSP pin

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting
of MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI
(Serial Peripheral Interface), which could be considered as an "expansion" of the

output. Actually, you are slaving the output device to the master of the SPI bus.

Power LED indicator

This LED should light up when you plug your Arduino into a power source to indicate
that your board is powered up correctly. If this light does not turn on, then there is
something wrong with the connection.

TX and RX LEDs

On your board, you will find two labels: TX (transmit) and RX (receive). They appear
in two places on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate
the pins responsible for serial communication. Second, the TX and RX led (13). The
TX led flashes with different speed while sending the serial data. The speed of
flashing depends on the baud rate used by the board. RX flashes during the
receiving process.

Digital I/O

The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM (Pulse
Width Modulation) output. These pins can be configured to work as input digital pins
to read logic values (0 or 1) or as digital output pins to drive different modules like
LEDs, relays, etc. The pins labeled “~” can be used to generate PWM.

AREF

AREF stands for Analog Reference. It is sometimes, used to set an external
reference voltage (between 0 and 5 Volts) as the upper limit for the analog input
pins.

Arduino - Installation
In this section, how to set up the Arduino IDE on our computer and prepare the board
to receive the program via USB cable.

Step 1 − First you must have your Arduino board (you can choose your favorite board)
and a USB cable. In case you use Arduino UNO, Arduino Duemilanove, Nano, Arduino
Mega 2560, or Diecimila, you will need a standard USB cable (A plug to B plug), the
kind you would connect to a USB printer as shown in the following image.

In case you use Arduino Nano, you will need an A to Mini-B cable instead as shown in
the following image.

Step 2 − Download Arduino IDE Software.

You can get different versions of Arduino IDE from the Download page on the Arduino
Official website. You must select your software, which is compatible with your
operating system (Windows, IOS, or Linux). After your file download is complete, unzip
the file.

Step 3 − Power up your board.

The Arduino Uno, Mega, Duemilanove and Arduino Nano automatically draw power
from either, the USB connection to the computer or an external power supply. If you
are using an Arduino Diecimila, you have to make sure that the board is configured to
draw power from the USB connection. The power source is selected with a jumper, a
small piece of plastic that fits onto two of the three pins between the USB and power
jacks. Check that it is on the two pins closest to the USB port.

Connect the Arduino board to your computer using the USB cable. The green power
LED (labeled PWR) should glow.

Step 4 − Launch Arduino IDE.

After your Arduino IDE software is downloaded, you need to unzip the folder. Inside the
folder, you can find the application icon with an infinity label (application.exe). Double-
click the icon to start the IDE.

Step 5 − Open your first project.

Once the software starts, you have two options −

 Create a new project.

 Open an existing project example.

To create a new project, select File → New.

To open an existing project example, select File → Example → Basics → Blink.

Here, we are selecting just one of the examples with the name Blink. It turns the LED
on and off with some time delay. You can select any other example from the list.

Step 6 − Select your Arduino board.

To avoid any error while uploading your program to the board, you must select the
correct Arduino board name, which matches with the board connected to your
computer.

Go to Tools → Board and select your board.

Here, we have selected Arduino Uno board according to our tutorial, but you must
select the name matching the board that you are using.

Step 7 − Select your serial port.

Select the serial device of the Arduino board. Go to Tools → Serial Port menu. This is
likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial
ports). To find out, you can disconnect your Arduino board and re-open the menu, the
entry that disappears should be of the Arduino board. Reconnect the board and select
that serial port.

Step 8 − Upload the program to your board.

Before explaining how we can upload our program to the board, we must demonstrate
the function of each symbol appearing in the Arduino IDE toolbar.

A − Used to check if there is any compilation error.

B − Used to upload a program to the Arduino board.

C − Shortcut used to create a new sketch.

D − Used to directly open one of the example sketch.

E − Used to save your sketch.

F − Serial monitor used to receive serial data from the board and send the serial data
to the board.

Now, simply click the "Upload" button in the environment. Wait a few seconds; you will
see the RX and TX LEDs on the board, flashing. If the upload is successful, the
message "Done uploading" will appear in the status bar.

Note − If you have an Arduino Mini, NG, or other board, you need to press the reset
button physically on the board, immediately before clicking the upload button on the
Arduino Software.

Arduino - Program Structure

we will study in depth, the Arduino program structure and we will learn more new
terminologies used in the Arduino world. The Arduino software is open-source. The
source code for the Java environment is released under the GPL and the C/C++
microcontroller libraries are under the LGPL.

Sketch − The first new terminology is the Arduino program called “sketch”.

Structure

Arduino programs can be divided in three main parts: Structure, Values (variables and
constants), and Functions. we will learn about the Arduino software program, step by
step, and how we can write the program without any syntax or compilation error.

Let us start with the Structure. Software structure consist of two main functions −

 Setup() function

 Loop() function

Void setup () {

}

 PURPOSE − The setup() function is called when a sketch starts. Use it to initialize the
variables, pin modes, start using libraries, etc. The setup function will only run once, after
each power up or reset of the Arduino board.

 INPUT − -

 OUTPUT − -

 RETURN − -

Void Loop () {

}

 PURPOSE − After creating a setup() function, which initializes and sets the initial values,
the loop() function does precisely what its name suggests, and loops consecutively,
allowing your program to change and respond. Use it to actively control the Arduino board.

 INPUT − -

 OUTPUT − -

 RETURN − -

Arduino - Data Types

Data types in C refers to an extensive system used for declaring variables or functions
of different types. The type of a variable determines how much space it occupies in the
storage and how the bit pattern stored is interpreted.

The following table provides all the data types that you will use during Arduino
programming.

void Boolean char Unsigned

char

byte int Unsigned int word

long Unsigned

long

short float double array String-char

array

String-

object

void

The void keyword is used only in function declarations. It indicates that the function is
expected to return no information to the function from which it was called.

Example

Void Loop () {

 // rest of the code
}

Boolean

A Boolean holds one of two values, true or false. Each Boolean variable occupies one
byte of memory.

Example

boolean val = false ; // declaration of variable with type boolean
and initialize it with false
boolean state = true ; // declaration of variable with type boolean
and initialize it with true

Char

A data type that takes up one byte of memory that stores a character value. Character
literals are written in single quotes like this: 'A' and for multiple characters, strings use
double quotes: "ABC".

However, characters are stored as numbers. You can see the specific encoding in
the ASCII chart. This means that it is possible to do arithmetic operations on
characters, in which the ASCII value of the character is used. For example, 'A' + 1 has
the value 66, since the ASCII value of the capital letter A is 65.

Example

Char chr_a = ‘a’ ;//declaration of variable with type char and
initialize it with character a
Char chr_c = 97 ;//declaration of variable with type char and
initialize it with character 97

unsigned char

Unsigned char is an unsigned data type that occupies one byte of memory. The
unsigned char data type encodes numbers from 0 to 255.

Example

Unsigned Char chr_y = 121 ; // declaration of variable with type
Unsigned char and initialize it with character y

byte

A byte stores an 8-bit unsigned number, from 0 to 255.

Example

byte m = 25 ;//declaration of variable with type byte and
initialize it with 25

int

Integers are the primary data-type for number storage. int stores a 16-bit (2-byte)
value. This yields a range of -32,768 to 32,767 (minimum value of -2^15 and a
maximum value of (2^15) - 1).

The int size varies from board to board. On the Arduino Due, for example,
an int stores a 32-bit (4-byte) value. This yields a range of -2,147,483,648 to
2,147,483,647 (minimum value of -2^31 and a maximum value of (2^31) - 1).

Example

int counter = 32 ;// declaration of variable with type int and
initialize it with 32

Unsigned int

Unsigned ints (unsigned integers) are the same as int in the way that they store a 2
byte value. Instead of storing negative numbers, however, they only store positive
values, yielding a useful range of 0 to 65,535 (2^16) - 1). The Due stores a 4 byte (32-
bit) value, ranging from 0 to 4,294,967,295 (2^32 - 1).

Example

Unsigned int counter = 60 ; // declaration of variable with
 type unsigned int and initialize it with 60

Word

On the Uno and other ATMEGA based boards, a word stores a 16-bit unsigned
number. On the Due and Zero, it stores a 32-bit unsigned number.

Example

word w = 1000 ;//declaration of variable with type word and
initialize it with 1000

Long

Long variables are extended size variables for number storage, and store 32 bits (4
bytes), from -2,147,483,648 to 2,147,483,647.

Example

Long velocity = 102346 ;//declaration of variable with type Long
and initialize it with 102346

unsigned long

Unsigned long variables are extended size variables for number storage and store 32
bits (4 bytes). Unlike standard longs, unsigned longs will not store negative numbers,
making their range from 0 to 4,294,967,295 (2^32 - 1).

Example

Unsigned Long velocity = 101006 ;// declaration of variable with
 type Unsigned Long and initialize it with 101006

short

A short is a 16-bit data-type. On all Arduinos (ATMega and ARM based), a short stores
a 16-bit (2-byte) value. This yields a range of -32,768 to 32,767 (minimum value of -
2^15 and a maximum value of (2^15) - 1).

Example

short val = 13 ;//declaration of variable with type short and
initialize it with 13

float

Data type for floating-point number is a number that has a decimal point. Floating-point
numbers are often used to approximate the analog and continuous values because
they have greater resolution than integers.

Floating-point numbers can be as large as 3.4028235E+38 and as low as -
3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

Example

float num = 1.352;//declaration of variable with type float and
initialize it with 1.352

double

On the Uno and other ATMEGA based boards, Double precision floating-point number
occupies four bytes. That is, the double implementation is exactly the same as the
float, with no gain in precision. On the Arduino Due, doubles have 8-byte (64 bit)
precision.

Arduino - Variables & Constants
Before we start explaining the variable types, a very important subject we need to
make sure, you fully understand is called the variable scope.

What is Variable Scope?

Variables in C programming language, which Arduino uses, have a property called
scope. A scope is a region of the program and there are three places where variables
can be declared. They are −

 Inside a function or a block, which is called local variables.

 In the definition of function parameters, which is called formal parameters.

 Outside of all functions, which is called global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be
used only by the statements that are inside that function or block of code. Local
variables are not known to function outside their own. Following is the example using
local variables −

Void setup () {

}

Void loop () {
 int x , y ;
 int z ; Local variable declaration
 x = 0;
 y = 0; actual initialization
 z = 10;
}

Global Variables

Global variables are defined outside of all the functions, usually at the top of the
program. The global variables will hold their value throughout the life-time of your
program.

A global variable can be accessed by any function. That is, a global variable is
available for use throughout your entire program after its declaration.

The following example uses global and local variables −

Int T , S ;
float c = 0 ; Global variable declaration

Void setup () {

}

Void loop () {
 int x , y ;
 int z ; Local variable declaration
 x = 0;
 y = 0; actual initialization
 z = 10;
}

