<u>Important notations:</u> # Determination of Ground state term for d¹ to d¹⁰ metal ions ### What is an energy term of a configuration? An energy term (also called simply as **term**) is an energy level or a set of energy levels which result from the *electron* – *electron repulsion* in an electronic arrangement or in a set of electronic arrangements of a configuration of a free metal atom or ion. An energy term contains a set of degenerate energy levels. Since the electron – electron repulsions in all the electronic arrangements of configuration may not be the same, there can be several energy levels in a configuration. Total number of energy levels in a configuration is equal to the total number of possible electronic arrangements for that configuration. In a many – electron system the number of energy levels is calculated though l-l and s-s coupling effects. An energy term of a configuration is written as ^{2S+1} L in which the quantity (2S+1) is called **spin multiplicity** of the term. Spin multiplicity gives the number of orientations of S in space or **spin multiplicity** gives the number of spin energy level. S in the term ^{2S+1} L is called **resultant spin angular momentum quantum numbers** & 'L' is called **resultant orbital angular momentum quantum number**, for L = 0, 1, 2, 3, 4, 5 the symbols used are S, P, D, F, G, H respectively. Thus | L | 0 | 1 | 2 | 3 | 4 | 5 | |---------|---|---|---|---|---|---| | Symbols | S | Р | D | F | G | Н | ### Representation of Full spectroscopic term of a given configuration A term of a given configuration is represented as $^{2S+1}$ L. The representation of a full term of a given configuration also contains J in addition to L & 2S+1. 'J' is written as a subscript at the right hand of L Thus a full term of a configuration is represented as ^{2S+1} L_J. Full term is also called *Russel-Saunders term*. ### In this representation: - i. L = Resultant orbital angular momentum quantum number (also called simply as resultant orbital quantum number). - ii. S = Resultant spin angular momentum quantum number (also called simply as resultant orbital quantum number) - iii. 2S + 1 = Spin multiplicity of the term. It indicates the number of spin energy levels in a term. - iv. J = Resultant (Overall or total or inner) angular momentum quantum number. J is also called simply as resultant (Overall or total or inner quantum number or (Orbital + spin) quantum number. # <u>Determination of Russel – Saunders symbols or terms for dⁿ</u> <u>Configurations (n = 1 to 10) of a free metal ion.</u> Russel – Saunders symbol or term of a given \mathbf{d}^n Configuration is represented as ^{2S+1} L_J. The term obtained by removing J from the Russel – Saunders term given above is called **ground state term**. Thus, ground state term is represented as ^{2S+1} L The determination involves the following steps: - i. Represent d-orbitals by thick bar (–) & fill these orbitals with **d*** electrons according to Hund's rule. - ii. Find out the value of resultant orbital quantum number (L) with the help of the relation: $L = \sum m_l$. Where; m_t is the orbital angular momentum for single electron. Values of m_t for $s, p, d \land f$ orbitals are as : $$s(l=0)=0$$; $p(l=1)=+1,0,-1$; $d(l=2)=+2,+1,0,-1,-2$; $f(l=3)=+3,+2,+1,0,-1,-2,-3$. Larises due to l-l coupling. The value of L ranges from l_1+l_2 to l_1-l_2 or l_2-l_1 whichever is positive, i.e., $$L \! = \! (l_{\ddot{\bullet}} \dot{\bullet} \, 1 \! + \! l_2), \! (l_1 \! + \! l_2 \! - \! 1), \dots, \! (l_{\ddot{\bullet}} \dot{\bullet} \, 1 \! - \! l_2) \dot{\bullet} \dot{\bullet} \text{ or } (l_2 \! + \! l_1)$$ We know that values of 'l' are represented by small letters as shown below: Values of *l* = 0 1 2 3 4 5 Small letters = s p d f g h Similarly values of **L** are represented by capital letters: Values of L = 0 1 2 3 4 5 Capital letters = S P D F G H - iii. Find out the value of resultant quantum number (S) with the help of the relation : $S = \sum m_s$. Where m_s is the spin angular momentum for single electron value of $\mathbf{m_s}$ for an electron represented as \uparrow is equal to +1/2 & that for an electron represented as \downarrow is equal to -1/2. Resultant spin quantum number (S) arises due to $\mathbf{S} \mathbf{S}$ coupling. - iv. Find the value of spin multiplicity, 2S+1 with the help of the value of S as determined at step (iii) above spin multiplicity is equal to the number of spin energy levels in a term. Spin multiplicity is also equal to (n+1) where 'n' is the number of unpaired electrons. - v. Find out the value of overall quantum number J. Jarises due to L-S coupling in many electron system. J can have the values ranging from (L+S) to (L-S) or (S-L) whichever is positive ie; $$J=(L+S), (L+S-1), \dots (L-S) \lor (S-L)$$ If d^x configuration is half – filled or less than half – filled, then the lowest value of J is used for writing the Russel Saunders symbol or term (ground state symbol) of d^x configuration. On the other hand, if d^x configuration is more than half- filled, then the highest value of J is used in writing the ground state symbol. Above procedure can be understood by determining the ground state symbol for $d^1, d^2, \dots d^9, d^{10}$ configurations of a free metal ion. (Note: For all d – orbitals l=2) **i.** d^1 configuration (Ti^{+3} oxidation state) $$m_{l} = +2+10-1-2$$ $$M_{s} = \frac{+1}{2} ()$$ $$(n=1)$$ $$L = \sum_{i} ml$$ 23 L=2 indicates D state. $$S=\sum m_s$$ $$\therefore S = 1 \times \left(\frac{+1}{2}\right)$$ $$\vdots \frac{1}{2}$$ \therefore Spin multiplicity, $2S+1=2\times\frac{1}{2}+1=2$ Since, spin multiplicity = 2 Ground state term of d^1 ion = ${}^{2S+1}L = {}^2D$ $$J = (L+S), (L+S-1), \dots, (L-S)$$ $$\dot{c} \left(2 + \frac{1}{2}\right), \left(2 + \frac{1}{2} - 1\right), \dots, \left(2 - \frac{1}{2}\right)$$ $$\dot{c} \frac{5}{2}, \frac{3}{2}$$ Now since d^1 ion is less than half filled, lower value of J will be used; ie; J=3/2. Hence, Russel — Saunders term of $$d^{1}$$ ion = $^{2S+1}$ L $_{J}$ = 2 D $_{3/2}$ **ii.** d^2 configuration δ $$m_l = +2 + 10 - 1 - 2$$ $$M_s = \frac{+1}{2} \left(\begin{array}{c} \\ \end{array} \right) \qquad (n=2)$$ $$L = \sum_{\substack{ c \\ (+2) \times 1 + (+1) \times 1}} ml$$ L=3 indicates F state. $$S = \sum m_s$$ $$\therefore S = 2 \times \left(\frac{+1}{2}\right)$$ $$\vdots 1$$ \therefore Spinmultiplicity, $2S+1=2\times1+1=3$ Since, spin multiplicity = 3 Ground state term of d^2 ion = ${}^{2S+1}$ L = 3 F $$J=(L+S), (L+S-1), \dots (L-S)$$ $i(3+1), (3+1-1), \dots (3-1)$ $i(4,3,2)$ Three values of J(i,4,3,2) show that 3F term is split up into three J energy levels which can be designated as 3F_4 , 3F_3 , 3F_2 . Now since d^2 configuration is less than half — filled, the J-energy level having the lowest value of J is the ground state (or term) for d^2 configuration. Thus: Russel — Saunders term of $$d^2$$ ion = ${}^{2S+1}$ $L = {}^{3}$ F_2 Since 3F_2 is the ground state symbol, it has the lowest energy (most stable). The energy of 3F_4 , 3F_3 , 3F_2 state is in the order: ${}^3F_2 < {}^3F_3 < {}^3F_4$ iii. d³ configuration ં $$m_1 = +2+10-1-2$$ $$M_s = \frac{+1}{2}$$ () $$L = \sum ml$$ $$\mathbf{i}(+2) \times 1 + (+1) \times 1 + (0) \times 1$$ $\mathbf{i}3$ L=3 indicates F state. $$S = \sum m_s$$ \therefore Spin multiplicity, $2S+1=2\times 3/2+1=4$ Since, spin multiplicity = 4 Ground state term of $$d^3$$ ion = ${}^{2S+1}$ L = 4 F $$J = (L+S), (L+S-1), \dots, (L-S)$$ $$\dot{c} \left(3 + \frac{3}{2}\right), \left(3 + \frac{3}{2} - 1\right), \dots, \left(3 - \frac{3}{2}\right)$$ $$\dot{c} \frac{9}{2}, \frac{7}{2}, \dots \frac{3}{2}$$ $$\dot{c} \frac{9}{2}, \frac{7}{2}, \frac{5}{2}, \frac{3}{2}$$ Now since d^3 ion is less than half filled, lowest value of J will form the ground state; ie; J=3/2. Hence, Russel — Saunders term of $$d^1$$ ion = ${}^{2S+1}$ L $_{J}$ = 4 F_{3/2} **iv.** d⁴ configuration i $$m_{l} = +2+10-1-2$$ $M_{s} = \frac{+1}{2}$ () (n=4) 23 L=2 indicates D state. $$S=\sum m_s$$ $$\therefore S = 4 \times (\frac{+1}{2})$$ $$\therefore$$ Spin multiplicity, $2S+1=2\times2+1=5$ Since, spin multiplicity =5 Ground state term of d^4 ion = ^{2S+1} L = ⁵D $$J = (L+S), (L+S-1), \dots (L-S)$$ $$\dot{c}(2+2),(2+2-1),\dots(2-2)$$ Now since d^4 ion is less than half filled, J will have the lowest value; ie; J=0. Russel — Saunders term of d^4 ion = ${}^{2S+1}$ \square \square = 5 \square 0 **V.** d^5 configuration \mathcal{L} $$m_l = +2 + 10 - 1 - 2$$ $$L = \sum_{\mathcal{L}} ml$$ $$\mathcal{L}(+2) \times 1 + (+1) \times 1 + (0) \times 1 + (-1) \times 1 + (-2) \times 1$$ $$\mathcal{L}(-2) \times 1 + (-1) \times 1 + (-2) \times 1$$ L = 0 indicates S state. $$S = \sum_{s} m_{s}$$ \therefore Spin multiplicity, $2S+1=2\times5/2+1=6$ Since, spin multiplicity = 6 Ground state term of d^5 ion = ^{2S+1} L = ⁶F $$\frac{1}{2}, \frac{5}{2}, \frac{5}{2}$$ Russel — Saunders term of d^5 ion = $^{28+1}$ L $_{\rm J}$ = 6 S_{5/2} **vi.** d^6 configuration & $$m_l = +2 + 10 - 1 - 2$$ $$M_s = \frac{+1}{2}$$ (), $\frac{-1}{2}$ () $$L = \sum_{i} ml \\ i(+2) \times 2 + (+1) \times 1 + 0 \times 1 + (-1) \times 1 + (-2) \times 1$$ L=2 indicates D state. $$S = \sum_{s} m_{s}$$ $$\therefore S = \left(\frac{+1}{2}\right) \times 5 + \left(\frac{-1}{2}\right) \times 1$$ \therefore Spin multiplicity, $2S+1=2\times2+1=5$ Since, spin multiplicity =5 Ground state term of $$d^4$$ ion = ^{2S+1} L = ⁵D $$J=(L+S), (L+S-1), \dots (L-S)$$ $\vdots (2+2), (2+2-1), \dots (2-2)$ $\vdots (4,3,2,1,0)$ Now since d^6 ion is more than half – filled, the highest value of J forms the ground state, ie; $J = 4(highest \ value)$ and hence: Russel — Saunders term of $$d^6$$ ion = ${}^{2S+1}$ L $_{\rm J}$ = ${}^5{\rm D}_4$ **vii.** d^7 configuration $$m_1 = +2 + 10 - 1 - 2$$ $$M_s = \frac{+1}{2} \text{ (), } \frac{-1}{2} \text{ ()}$$ $$L = \sum_{i=1}^{n} ml$$ $$i(+2) \times 2 + (+1) \times 2 + (0) \times 1 + (-1) \times 1 + (-2) \times 1$$ L=3 indicates F state. $$S = \sum m_s$$ $$\therefore S = \left(\frac{+1}{2}\right) \times 5 + \left(\frac{-1}{2}\right) \times 2$$ $$\frac{5}{2} - 1$$ $$\frac{3}{2}$$ \therefore Spin multiplicity, $2S+1=2\times 3/2+1=4$ Since, spin multiplicity = 4 Ground state term of d^7 ion = ^{2S+1} L = ⁴F $$J=(L+S),(L+S-1),.....(L-S)$$ $$\dot{c}\left(3+\frac{3}{2}\right),\left(3+\frac{3}{2}-1\right),.....\left(3-\frac{3}{2}\right)$$ $$\dot{c}\frac{9}{2},\frac{7}{2}...\frac{3}{2}$$ $$\dot{c}\frac{9}{2},\frac{7}{2},\frac{5}{2},\frac{3}{2}$$ Now since d^7 ion is more than half – filled, J will have the highest value. Hence, Russel — Saunders term of $$d^7$$ ion = $^{2S+1}$ L $_J$ = 4 F_{9/2} **viii.** d^8 configuration $$m_l = +2 + 10 - 1 - 2$$ $$M_s = \frac{+1}{2}$$ (), $\frac{-1}{2}$ () $$\begin{array}{l} L = \sum ml \\ \dot{c}(+2) \times 2 + (+1) \times 2 + (0) \times 2 + (-1) \times 1 + (-2) \times 1 \\ \dot{c}(3) \end{array}$$ L=3 indicates F state. $$S = \sum_{s} m_{s}$$ $$\therefore S = 5 \times \left(\frac{+1}{2}\right) + 3 \times \left(\frac{-1}{2}\right)$$ \therefore Spin multiplicity, $2S+1=2\times1+1=3$ Since, spin multiplicity = 3 Ground state term of d^2 ion = ${}^{2S+1}L = {}^{3}F$ $$J = (L+S), (L+S-1), \dots \dots (L-S)$$ $$\dot{c}(3+1), (3+1-1), \dots \dots (3-1)$$ ¿4,3,2 Now since d^8 configuration is more than half – filled, the highest value of J is to be used, ie; J = 4(highest value) and hence: Russel — Saunders term of d^8 ion = $^{2S+1}$ L $_{3}$ = 3 F₄ **ix.** d^9 configuration $$m_l = +2 + 10 - 1 - 2$$ $$M_{s} = \frac{+1}{2} \left(\right), \frac{-1}{2} \left(\right)$$ $$(n=1)$$ $$L = \sum_{i} ml$$ $$i(+2) \times 2 + (+1) \times 2 + (0) \times 2 + (-1) \times 2 + (-2) \times 1$$ $$i = \sum_{i} ml$$ L=2 indicates D state $$S = \sum m_s$$ $$S = 5 \times \left(\frac{+1}{2}\right) + 4 \times \left(\frac{-1}{2}\right)$$ $$\frac{1}{2}$$ \therefore Spin multiplicity ,2 $S+1=2 \times \frac{1}{2}+1=2$ Ground state term of d^1 ion = ${}^{2S+1}$ L = 2 D $$J = (L+S), (L+S-1), \dots \dots (L-S)$$ $$\stackrel{\downarrow}{\circ} \left(2 + \frac{1}{2}\right), \left(2 + \frac{1}{2} - 1\right), \dots \dots \left(2 - \frac{1}{2}\right)$$ $$\stackrel{\downarrow}{\circ} \frac{5}{2}, \frac{3}{2}$$ Now since d^9 ion is more than half – filled, J will have higher value, ie; J = 5/2. Hence, Russel — Saunders term of $$d^1$$ ion = $^{2S+1}$ L $_{J}$ = 2 D_{5/2} ### **X.** d^{10} configuration $$m_1 = +2 + 10 - 1 - 2$$ $$M_{s} = \frac{+1}{2} \left(\right), \frac{-1}{2} \left(\right) \right) \tag{n=0}$$ $$L = \sum_{i=1}^{n} ml$$ $$i(+2) \times 2 + (+1) \times 2 + (0) \times 2 + (-1) \times 2 + (-2) \times 2$$ $$i0$$ L = 0 indicates S state $$S = \sum m_s$$ $$\therefore S = 5 \times \left(\frac{+1}{2}\right) + 5 \times \left(\frac{-1}{2}\right)$$ 60 ... Spin multiplicity, $2S+1=2\times0+1=1$ Since, spin multiplicity = 1 Ground state term of d^{10} ion = ^{2S+1} L = ¹S $$J = (L+S), (L+S-1), \dots (L-S)$$ 03 ### Russel — Saunders term of d^{10} ion = $^{2S+1}$ L $_{J}$ = 1 S $_{0}$ | | | | | | AIN | | |---------------|------------|----------------|-------------------|----------------|----------|-------------------------------| | d^n | $L=\sum I$ | $S = \sum m_s$ | Spin multiplicity | Ground | J=(L+S), | Russel — Saunde | | configuration | state | | ¿2S+1 | state term | L+S-1, | term | | (Ion) | | , n | ¿n+1 | 2S+1 L | (L-S) | 2S+1 L J | | | | <u>د n</u> | | | , | | | | | ં | | | | | | | | of | | | | | | | | unpaired | | | | | | | | electrons ¿ | | | | | | d^1 | 2(D) | 1/2 | 2 | ² D | 3/2 | ² D _{3/2} | | ن | | | | | | | | d^2 | 3(F) | 1 | 3 | ³ F | 2 | ³ F ₂ | | i | | | | - | | - 2 | | d^3 | 3(F) | 3/2 | 4 | ⁴ F | 3/2 | ⁴ F _{3/2} | | i a | 3(F) | 312 | 4 | Г | 312 | Г 3/2 | | | - (-) | | | F- | | | | d^4 | 2(D) | 2 | 5 | ⁵D | 0 | 5 D ₀ | | ذ | | | | | | | | d^5 | 0(S) | 5/2 | 6 | ⁶ S | 5/2 | ⁶ S _{5/2} | | ن | | | | | | | | d^6 | 2(D) | 2 | 5 | 5 D | 4 | ⁵ D ₄ | | i | | | | | | | | d^7 | 3(F) | 3/2 | 4 | ⁴ F | 9/2 | ⁴ F _{9/2} | | i d | 3(1) | 3/2 | _ | Г | 372 | F 9/2 | | | () | | _ | | | | | d^8 | 3(F) | 1 | 3 | ³ F | 4 | ³ F ₄ | | i | | | | | | | | d^9 | 2(D) | 1/2 | 2 | ² D | 5/2 | ² D _{5/2} | | i | ` ′ | | | | | 0,2 | | d^{10} | 0(c) | 0 | 1 | ¹ S | 0 | ¹ S ₀ | | | 0(S) | | 1 | ၁ | | | | i | | | | | | | | | | | | | | | - The two ions having d^n and d^{10-n} configurations have the same terms with the same value of spin multiplicity but with different value of J. - For example, the two configurations given in the following four pairs have the same terms given in bracket: $d^1 \wedge d^{10-1} \vee d^9 = (^2\mathbf{D}), d^2 \wedge d^{10-2} \vee d^8 = (^3\mathbf{F}), d^3 \wedge d^{10-3} \vee d^7 = (^4\mathbf{F}), d^4 \wedge d^{10-4} \vee d^6 = (^5\mathbf{D}),$ since the two configurations of each pair are hole equivalents to each other. - The ground state terms of above configuration pairs are given as: $$d^0, d^{10} \rightarrow {}^{1}S$$ $$d^2.d^8 \rightarrow {}^3\mathbf{F}$$ $$d^4, d^6 \rightarrow {}^{5}\mathbf{D}$$ $$d^1, d^9 \rightarrow {}^2\mathbf{D}$$ $$d^3, d^7 \rightarrow 4$$ $$d^5 \rightarrow {}^{5}$$ - $d^1, d^9, d^4 \wedge d^6$ ions have the same term symbol which is D (L=2) - d^0 , $d^{10} \wedge d^5$ ions have the same term symbol, S (L=0) - d², d^8 , $d^3 \wedge d^7$ ions have the same term symbol, F (L=3) ### **Question Bank:** - 1. The ground state term symbol for the free Co⁺² ion is - a) ⁴F | | b) ⁵ F | |------|---| | | c) ⁴ P | | | d) ⁵ D | | | e) ⁴ D | | 2. | The electronic ground state term for the chromium ion in $[Cr(CN)_6]^{4-}$ is | | | | | a) | 3 F | | b) | 3 H | | c) | 3 G | | d) | ⁵ D | | 3. | Find out the ground state term of 3d ⁵ configuration of Mn ⁺² . | | 4. | The ground state term symbol for the free ion Fe ⁺³ is | | a) | ⁵ D | | b) | ⁶ S | | c) | ⁶ P | | d) | ⁶ D | | e) | ⁴ F | | 5. | Derive the ground state term symbol for: | | i. | Ni^{+2} | | ii. | d^{10} ion | | iii. | $\mathbf{Z}\mathbf{n}^{+2}$ | | iv. | Co ⁺³ | | V. | $ m V^{+2}$ | - 6. Find the ground term symbol for Cr(3d⁵ 4s¹). - 7. Identify the ground state term giving reasons for the following set (calculate L): ¹S, ³F, ³P, ¹G, ¹D - 8. Give the ground state Russell Saunders terms for 3d⁵ and d⁸. - 9. Write the Russell Saunders term symbols for states with the angular momentum quantum numbers (L, S): - a) $\left(0,\frac{5}{2}\right)$ - b) $(3, \frac{3}{2})$ - c) $\left(2,\frac{1}{2}\right)$ - d) (1,1) ### References 1. Atkins P, Overton T, Rourke J et. al, Shiver and Atkins' *Inorganic Chemistry, 5th Edition*. Oxford University Press. - 2. DETERMINING GROUND STATE TERM SYMBOL All 'Bout Chemistry (chemohollic.com) http://www.chemohollic.com/2016/07/determining-ground-state-term-symbol.html - 3. Dr. Wahid Malik, D. G. (2014). *Selected topics in inorganic chemistry*. Ram Nagar, New Delhi 110055: S. Chand Publishing. - 4. Atomic Term Symbols Chemistry LibreTexts (Aug 22, 2020) https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/ Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/ Electronic Spectroscopy/Spin-orbit Coupling/Atomic Term Symbols - 5. Dalal, M. (2017). A TEXTBOOK OF INORGANIC CHEMISTRY, Vol. 1. Haryana: Dalal Institute. - 6. E.U. Condon and G. H. Shortely, *The therory of atomic Spectra*. Cambridge University Press (1935); revised as E. U. Condon and H. Odabasi, *Atomic Structure*. Cambridge University Press (1980). - 7. F. A. Cotton, G. Wilkinson & P. L. Gaus, *Basic Inorganic Chemistry*, John Wiley, 1995, 3rd Ed. - 8. F. A. Cotton & G. Wilkinson, *Advanced Inorganic Chemistry*, Wiley Eastern, New Delhi, 1984, 3rd Ed.