Quadrant II – Transcript and Related Materials

Programme: Bachelors degree in science

Subject: Chemistry

Paper Code: CHC- 109

Paper Title: INORGANIC CHEMISTRY (SECTION B)

Unit: Reaction Kinetics and Mechanism

Module Name: Trans- effect with respect to square planar Platinum complexes.

Module No: 13

Name of the Presenter: Ms. Varsha K. Sail

Notes:

TRANS EFFECT IN SQUARE PLANNER COMPLEX

- The important feature of substitution reaction in square planner complexes is the nonlabile ligands, that are trans to the leaving ligands
- The ligand trans to the leaving group in square planar complex

may influence the rate of substitution.

• They also plays an important role in the type of isomer obtained

The ability of an attached group to direct substitution into a position trans to itself is called the <u>trans effect.</u>

Consider a general square planer substitution reaction.

[Pt TX₃] + Y

[Pt TX₂Y] + X

- Any one of the three **X** can be replace by the **entering ligand Y**.
- The ligand X that is replaced can be either cis or trans to T,
- Leading to **cis or trans** orientation of **Y** with respect to **T** in the product.
- The **proportion** of cis and trans product varies appreciably with the **nature of the ligand T.**
- Ligand T that strongly favors trans substitution to give products in the reaction are said to be strong trans director ligand.

A strong trans director ligand T promotes more rapid substitution of the ligand <u>trans</u> to itself than it does of the ligand cis to itself.

Trans effect series

The series of ligands T arranged in the order with respect to their tendency to be strong trans directors is known as **trans effect series**

• If **T** is a strong σ – donor ligands or π - acceptor ligands ,

then it greatly accelerate **substitution** of ligand that lies **trans** to it.

• The order of ligand with increasing trans effect is as below

 H_2O , OH^- , NH_3 , $py(NC_5 H_5) < Cl^-$, Br^- , $< SCN^-$, l^- , NO^{-2} , $C_6H_5^- < SC(NH_2)_2$, CH_3^-

 $< H^{-}, PR_{3} < C_{2}H_{4}, CN^{-}, CO$

The above orders are also roughly the order of increasing overlap of the ligand orbital with either σ or a π 6p orbitals of Pt

i.e. greater the overlap, the stronger the trans effect.

<u>Theories of trans effect:</u> e activated complex both affect the activation energy required for the substitution reaction

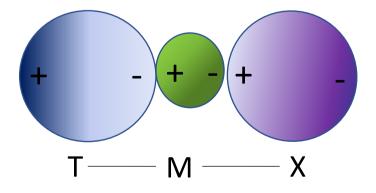
The stability of the ground state and th

- As a result any factor affecting the **stability of the ground state** and the **activation complex** will influence the trans effect
- Accordingly there are **two theories.**

1. Polarization theory

2. The pi Bonding Theory

Former related to the ground state and later to the activated complex.


1. Polarization theory :

Given by Grinberg , who first attempted to explain trans effect

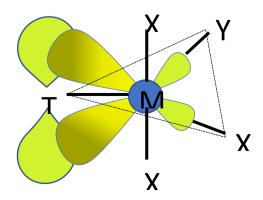
• This theory is related to the stability of the ground state

It is postulated that

- The **primary charge** on the metal ion **polarizes** the electron cloud on the **ligand T** and induce dipole moment in it.
- The dipole moment on **T** in turn **induce dipole** moment in **M**
- The orientation of the **dipole** in the metal ion is such that it **repels** the negative charge in the **ligand X** trans to T.

- As a result ligand **X** is less attracted to metal due to the presence of ligand T
- Magnitude of trans effect of T and its polarizability are monotonically related
- Now, This is largely correct for ligands which do not form
 pi bond with the metal such as H⁻, I⁻, Cl⁻

Thus,

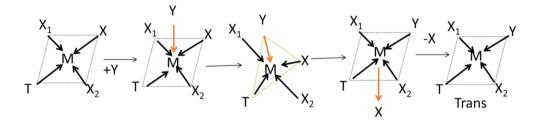

Trans effect is directly related to the polarization of the.

2. The pi bonding theory: *ligand*

- This theory explain the trans effect of **ligands** which are **strong pi acceptor or pi acid** eg phosphines, CO, alkenes
- It relates the tendency of the ligand T to remove d electron density on metal by pi bonding to the magnitude of their trans effect.

For substitution reaction in the square planar,

- it suggest a transition state with trigonal bipyramidal geometry
- This transition state geometry is **stabilized**
- if empty pi orbitals (p,d, π*) of the ligand T overlap with the non bonding filled d π orbital of the metal to form pi bond.
- Activated complex (trigonal bipyramidal) with trans MX₃YL is shown in the figure below

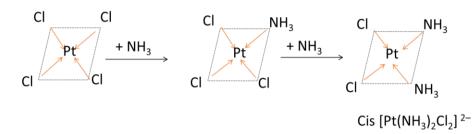


Because of this **M-T pi** interaction the **electron density** from the d_{xz} orbital of the metal ion is **drawn away** from the incoming **nucleophile Y**

Thus the trigonal bipyramidal transition state is stabilized

Hence strong π - acceptor ligands greatly accelerate substitution of ligand that lies trans to it. The Steric course of ligand substitution in square planar complex.

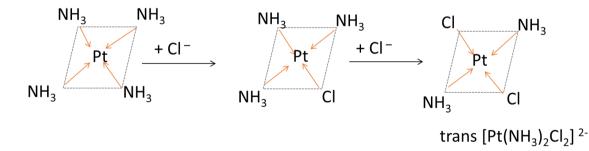
- The incoming ligand Y results in formation of a trigonal bipyramidal five coordinated intermidiate.
- The ligand X₁ and X₂ occupy axial position in the intermediate and are **cis** to the **leaving group X**
- The ligand T in the reaction is the strong trans director as T is trans to the leaving group X
- The entering ligand Y, the leaving X ligand and the trans ligand
 T, share the equatorial position of the triagonal bipyramidal intermediate


• The new ligand **Y** in the final product **occupies position** vacated by the **leaving ligand**

The reaction sequence can be summarized as follow

Application of trans effect in synthesis of isomers of square planar complex

1. Consider synthesis of cis and trans isomer of $[Pt(NH_3)_2Cl_2]^{2-}$


- The **cis isomer** is obtained by treatment of [Pt Cl₄]²⁻ ion with ammonia.
- Because Cl⁻has greater trans directing effect than NH₃, the incoming NH₃ will not substitute in the trans positions to the existing NH₃
- It will occupy a position cis to existing NH₃
- The reaction can be **summerizes** as follow

Thus Cis isomer will be favored

2. The trans isomer of $[Pt(NH_3)_2Cl_2]^{2-}$ is prepared by treating $[Pt(NH_3)_4]^{4+}$ with Cl⁻

- Cl⁻ ion has greater trans effect then NH₃,
- So the first Cl⁻ directs the second incoming Cl⁻ to its trans position.

Thus the product obtained is a *trans* isomer