Quadrant II – Transcript and Related Materials

Programme: Bachelor of Science

Subject: Mathematics

Paper Code: MTE103

Paper Title: Number Theory

Unit: 1

Module Name: LCM and its Properties

Name of the Presenter: Ms. Namrata Naik (Assistant Professor)

Notes

Definition:

Least Common Multiple:

Let $a, b \in \mathbb{Z} \setminus \{0\}$. The least common multiple of a and b is the positive integer m satisfying

- i. a|m and b|m
- ii. If a|c and b|c, with c > 0 then $m \le c$.

Notation:

Least common multiple of a and b is denoted by lcm(a, b).

Examples:

lcm(12,4) = 12, lcm(15,-5) = 15, lcm(-6,-8) = 24

For positive integers a and $b \operatorname{gcd}(a, b) \operatorname{lcm}(a, b) = ab$.

Proof: Let d = gcd(a, b), then a = dr and b = ds for integers r and s.

Let $m = \frac{ab}{d}$, then m = as = br.

Let c be a positive integer that is a common multiple of a and b.

i.e., let c = au = bv for some integers u and v.

There exist integers x and y such that d = ax + by. Then

$$\frac{c}{m} = \frac{cd}{ab} = \frac{c(ax+by)}{ab} = \left(\frac{c}{b}\right)x + \left(\frac{c}{a}\right)y = vx + uy \in \mathbb{Z}$$

Therefore, m|c.

$$\Rightarrow m \le c.$$

$$\Rightarrow m = lcm(a, b)$$

Hence, $lcm(a, b) = \frac{ab}{d} = \frac{ab}{\gcd(a, b)}$ or $lcm(a, b) \gcd(a, b) = ab.$

➢ For any positive integers *a* and *b*, *lcm*(*a*, *b*) = *ab* if and only if gcd(*a*, *b*) = 1.
 Proof: By above theorem, *lcm*(*a*, *b*) gcd(*a*, *b*) = *ab*.

If gcd(a, b) = 1 if and only if lcm(a, b) = ab

Properties:

1. If
$$k > 0$$
, $lcm(ka, kb) = klcm(a, b)$
Proof: $gcd(ka, kb) = k gcd(a, b)$.
 $lcm(ka, kb) gcd(ka, kb) = k^2ab = k lcm(a, b) \cdot k gcd(a, b)$

 $\implies lcm(ka,kb) = k lcm(a,b).$

2. If *m* is any common multiple of *a* and *b*, then lcm(a, b)|m.

Proof: Let k = lcm(a, b). By division algorithm, $m = qk + r, 0 \le r < k$.

i.e.,
$$r = m - qk$$
.

Both a and b divide m and k implies a and b divide r.

Therefore, r is a common multiple of a and b.

But $0 \le r < k \implies r = 0$.

Hence, m = qk or k|m.

3. gcd(a, b) = lcm(a, b) if and only if $a = \pm b$

Proof: If $a = \pm b$ then gcd(a, b) = |a| = lcm(a, b). Conversely, suppose gcd(a, b) = lcm(a, b) = ka|lcm(a, b) = k and $k = gcd(a, b) |a \Longrightarrow k = \pm a$ Similarly, $k = \pm b$. Therefore, $a = \pm b$.