Quadrant II

Programme: Bachelor of Science (Third Year)

Subject: Physics

Course Code: PYD106

Course Title: Nuclear Physics

Unit 4: Nuclear reactions

Module Name: Energetics of nuclear reactions, Q value

Module No: 15

Q-value of Nuclear Reactions:

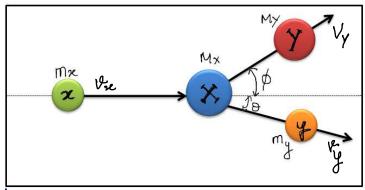
- •The important part of nuclear reactions is the energy released or taken-up in the reaction.
- •It is called as nuclear reaction energy and is denoted by Q-Value.
- •It also represents the difference between kinetic energies of products of the reaction and that of incident particles.

Q-value in Nuclear Reaction

Let us consider a leaction $x + x \rightarrow y + y$ x - incident particle (KE = Ex) x - the target particle (KE = Ex) y - the product nuclei (KE = Ex) y - the product particle (KE = Ex)From Law of conservation of energy we have $(E_x + m_x c^2) + M_x c^2 = (M_y c^2 + E_y) + (m_y c^2 + E_y) - 0$ The g-value of the reaction is $g = E_y + E_y - E_x$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$ $g = M_x + m_x c^2 - (M_y + m_y) c^2$

Q-value in Nuclear Reaction

Consider a Heaction 2+ X -> Y+Y+Q


Applying how of conservation of

Linear momentum along X-axis A

Y-axis we have

mz br = My Vy los p + my by cos p - 1

O = My Vy sin p - my by sin p - 2

From D My Vy sin ϕ = My Vy cos ϕ - Θ From D My Vy sin ϕ = my Vy sin ϕ - Θ Squaring D and Θ and adding them we get $(m_{x}v_{x})^{2}+(m_{y}v_{y})^{2}-2m_{x}v_{x}m_{y}v_{y}\cos \phi=(m_{y}v_{y})^{2}-G$

Q-value in Nuclear Reaction

We have $Ex = \frac{1}{2} m_X t_X^2$, $Ey = \frac{1}{2} m_Y t_Y^2$ and $Ey = \frac{1}{2} M_Y V_Y^2$ 2 Ex $mx = (m_X t_X^2)$, $2E_Y m_Y = (m_Y t_Y)^2$ 2 Ex $mx = (m_X t_X^2)$, $2E_Y m_Y = (m_Y t_Y)^2$ 2 Ex $mx + 2E_Y m_Y - 4 \sqrt{Ex m_X E_Y m_Y} \cos \theta = 2E_Y M_Y$ 3 Ex $mx + 2E_Y m_Y - 4 \sqrt{Ex m_X E_Y m_Y} \cos \theta = 2E_Y t_Y - Ex$ 1. The Q-value of the reaction can be written as $Q = E_Y t_Y^2 - E_X$ 1. $Q = E_X \left(\frac{m_X}{M_Y} - 1\right) + E_Y \left(\frac{m_Y}{M_Y} + 1\right) - 2 \sqrt{Ex m_X E_Y m_Y} \cos \theta - 2$ 1. $Q = E_X \left(\frac{m_X}{M_Y} - 1\right) + E_Y \left(\frac{m_Y}{M_Y} + 1\right) - 2 \sqrt{Ex m_X E_Y m_Y} \cos \theta - 2$