Quadrant II – Transcript and Related Materials

Programme: Bachelor of Science (Third Year)

Subject: Chemistry

Course Code: CHD-103

Course Title: Selected Instrumentation in Chemistry (Section B)

Unit: UV-Visible Spectroscopy

Module Name: Derivation of Beer-Lambert's law, deviations from Beer's law

Name of the Presenter: Ms. Shreya Avdhoot Silimkhan

Notes

Beer-Lambert's law

- A combination of Lambert's law and Beer's law results in the Beer-Lambert's law.
- > It governs the absorption of light by absorbing media like solutions.
- This law states that "The fraction of incident radiation absorbed is proportional to the number of absorbing molecules in its path."

A = ɛcl

Lambert's law of transmission of light (derivation)

> The law states that:

When a monochromatic light is passed through a pure homogeneous medium, the decrease in the intensity of light with thickness of the absorbing medium at any point X is proportional to the intensity of the incident light.

 $-\underline{\mathsf{dI}}\propto \mathsf{I}$

dx

≻ –<u>dl</u> = kl

dx

Where, dI is the small decrease in intensity of the light passing through a small thickness dx.

(i)

- ➤ k is the constant of proportionality called the absorption coefficient.
- The intensity I at any point X at a distance x from the start of the medium, can be found in terms of the original intensity I_o as follows:
- Equation (i) can be rewritten as:

$$\rightarrow$$
 dI/I = -k dx (ii)

- \blacktriangleright When x=0, I = I_o
- ➢ Integrating equation (ii) between the limits x=0 to x and I = I₀ to I, we get $\int_{I}^{I₀} dI / I_{=} \int_{x=0}^{x=x} -kdx$
- $in \frac{1}{2} = -kx$ (iii) $k \frac{1}{2} = e^{-kx}$

$$\rightarrow \text{ Or } I = I e^{-kx}$$
 (iv)

- This equation expresses how the original intensity I is reduced to intensity I after passing through a thickness x of the medium.
- Equation (iii) can be written as
- ➤ 2.303 log l/l_o = -kx
- $log I/I_{o} = -kx/2.303$
- $ightarrow \log I/I_o = k x$ (v)
- $\geq I = I_0 10^{-k'x}$ (vi)
- Where k' = k/2.303 is called extinction coefficient of the substance i.e. the absorbing medium.
- This quantity is now called absorption coefficient or absorptivity of the substance.
- \blacktriangleright log I/I_o is called absorbance of the medium .

Beer's Law

- Beer's law states that:
- When a monochromatic light is passed through a solution, the decrease in the intensity of light with the thickness of the solution is directly

proportional not only to the intensity of the incident light but also to the concentration c of the solution.

- Mathematically we have
- ➤ -dl/dx ∝ I x c
- → $-dI/dx = \epsilon Ic$ (ϵ is pronounced as epsilon)
- Where *ɛ* is a constant of proportionality and is called molar absorption coefficient. Its value depends upon the nature of the absorbing solute and the wavelength of the light used.
- Equation (i) can be rewritten as

$$ightarrow dI/I = -\epsilon c dx$$

- Integrating this equation between the limits x=0 to x and I = I_o to I, we get
- $\succ \int_{I}^{I_{\circ}} dI /I = \int_{x=0}^{x=x} -\varepsilon c dx$

>
$$\ln I/I_{o} = -\epsilon c dx$$
 (ii)

- \succ I/I_o = e^{- εcx} (iii)
- \succ I = I_o e^{- εcx} (iv)
- This equation expresses how the intensity of a monochromatic light falls from I_o to I on passing through a thickness x of a solution of concentration c.
- \blacktriangleright 2.303 log l/l_o = - ε cx
- $\triangleright \log I/I_{o} = -\varepsilon cx/2.303$
- $\triangleright \log 1/l_0 = -\varepsilon' cx$
- \succ I = I x $10^{-\varepsilon' c x}$
- > $\varepsilon' = \varepsilon/2.303$ was earlier called molar extinction coefficient of the absorbing solution. Now this quantity is called molar absorption coefficient or molar absorptivity of the absorbing solution.

Deviations from Beer's law

- The linear relationship between optical density and concentration of solution is not observed at concentrations above 10⁻² M.
- Hence concentrated solutions do not obey Beer-Lambert's equation.
- The law is not obeyed if the absorbing species reacts with the solvent, dissociates or associates in solution.

(v)

(i)

- The molecules of the absorbing species should remain as simple molecules and should not undergo any change in molecular condition.
- Temperature fluctuations and entry of stray light into the absorbing system also lead to deviations from Beer- Lamberts law.
- The light incident on the absorbing medium should be monochromatic otherwise minor deviations from Beer-lamberts law are observed.
- Hence monochromators have to be used to produce monochromatic beams.
- The molar extinction coefficient depends on the refractive index of the absorbing medium.
- At high concentrations these changes are considerable but at concentrations below 10⁻²M, these changes can be neglected.
- When Beer-Lambert law is obeyed, calibration plot will be obtained as a straight line passing through the origin.
- If there are deviations from Beer-Lambert's law, the calibration plot will curve either:
- Upward (positive deviation)
 OR
- Downward (negative deviation)

Validity of Beer-Lambert's law

- The Beer-Lambert's law is strictly applicable to dilute solutions whose concentrations are below 10⁻² M.
- Such solutions obey the equation O.D = $-\log_{10} T = \varepsilon cl$
- According to which optical density is proportional to the concentration of the solution and transmittance is inversely proportional to the concentration.

REFERENCES

Dr. Madan R.L., (2014), 'Chemistry for Degree Students B.Sc. Third Year', S. Chand.