Quadrant II – Transcript and Related Materials

Programme: Bachelor of Science (Third Year)

Subject: Mathematics

Course Code: MTC 109

Course Title: Complex Analysis

Unit: Unit 3: Elementary Functions

Module Name: Hyperbolic Functions

Name of the Presenter: Ms. Smita R.Kuncolienkar

Notes:

Hyperbolic Functions Definition:

The complex hyperbolic functions cosh, $sinh: \mathcal{C} \rightarrow \mathcal{C}$ are defined by

 $Sinh z = \frac{e^{z} - e^{-z}}{2}$ $Cosh z = \frac{e^{z} + e^{-z}}{2}$

Properties /Identities:

1.Sinh, Cosh : $C \rightarrow C$ are **entire** functions and (i) $\frac{d}{dz}(\operatorname{Sinh} z) = \operatorname{Cosh} z$ (ii) $\frac{d}{dz}(\operatorname{Cosh} z) = \operatorname{Sinh} z$ 2.The functions Sinh z and Cosh z are **periodic** with period $2\pi i$ 3. Sinh $(-z) = -\operatorname{Sinh}(z)$; Cosh $(-z) = \operatorname{Cosh}(z)$ 4. $\operatorname{cosh}^2 z - \operatorname{sinh}^2 z = 1 \quad \forall z \in C$ 5.Relation between Hyperbolic and Trignometric functions $\operatorname{Cosh}(iz) = \operatorname{Cos} z$; $\operatorname{Sinh}(iz) = i\operatorname{Sin} z$ $\operatorname{Cos}(iz) = \operatorname{Cosh} z$; $\operatorname{Sin}(iz) = i\operatorname{Sinh} z$ 6. For complex numbers z_1 and z_2

 $\sinh(z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2$

$$\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$$

7. Sinh z = Sinh x Cosy + i Coshx SinyCosh z = Cosh x Cosy + i Sinh x Siny

8.
$$|sinhz|^2 = sinh^2x + sin^2y$$

$|coshz|^2 = sinh^2x + cos^2y$

Zeros of Hyperbolic Functions

9. The zeroes of Sinh z are purely imaginary i.e. $Sinh z = 0 \Rightarrow z = n\pi i$

10. The zeroes of Cosh z are purely imaginary

 $Cosh z = 0 \Rightarrow z = (2n+1)\frac{\pi i}{2}$

Other Hyperbolic Functions

$$Tanh z = \frac{\sinh z}{\cosh z}$$
 $Coth z = \frac{\coth z}{\sinh z}$ $Sech z = \frac{1}{\cosh z}$ $Cosech z = \frac{1}{\sinh z}$

Singularities and Derivatives of Tanh z, Sech z, Coth z, Cosech z

The singularities of Tanh z and Sech z are the zeros of

Cosh z i.e. $z = (2n+1)\frac{\pi i}{2}$

Except at these points Tanh z and Sech z are analytic everywhere and their derivatives are

 $\frac{d}{dz}(\operatorname{Tan} hz) = \operatorname{sech}^2 z \quad ; \frac{d}{dz}(\operatorname{Sech} z) = \operatorname{Sech} z \, \operatorname{Tanh} z$

Similarly, The singularities of Coth z and Cosech z are the zeros of Sinh z i.e. $z = n\pi i$

Except these points *Coth z* and *Cosech z* are analytic everywhere and their derivatives are

 $\frac{d}{dz}(\operatorname{Coth} z) = -\operatorname{Cosech}^2 z ;$ $\frac{d}{dz}(\operatorname{Cosech} z) = -\operatorname{Cosech} z \operatorname{Coth} z$

Periodiciy of Tanh z and Coth zTanh z and Coth z are **periodic** with period πi

since $Tanh(z + \pi i) = Tanh z$ and $Coth(z + \pi i) = Coth z$