Quadrant II – Notes

Programme: Bachelor of Science (Third Year)

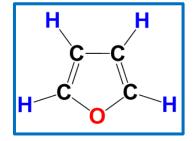
Subject: Chemistry

Paper Code: CHC107

Paper Title: Organic Chemistry

Unit: Unit 4 – Section B- Chemistry of Heterocyclic compounds

Module Name: Structure, Resonance, Stability & Industrial source of Furan


Module No: 19

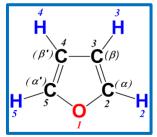
Name of the Presenter: Dr. Durga P. Kamat, Ph.D., Assistant Professor, Dhempe College of Arts & Science, Miramar Goa

Notes:

Furan- a brief introduction

- Furan is a five membered heterocycle with four carbon atoms and one oxygen as heteroatom.
- Compounds containing such heterocyclic ring are also referred to as furans.

Nomenclature

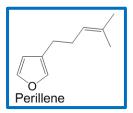

- Preferred IUPAC Name : Furan
- *Systematic IUPAC Name*: 1,4-Epoxybuta-1,3-diene

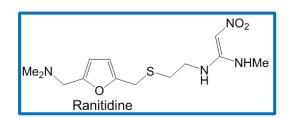
1-Oxacyclopenta-2,4-diene

• *Other names* : Furfuran, Oxole, Divinylene oxide.

Numbering in Furan

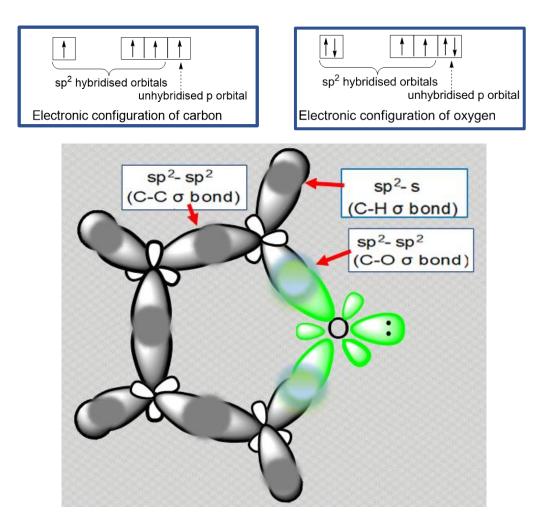
• The numbering begins from the heteroatom.




Properties

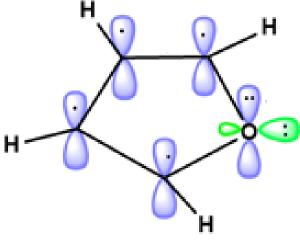
- A colourless, volatile liquid with strong ethereal odour
- Boiling point: 31.4°C; Density: 0.936 g/mL
- Solubility: soluble in alcohol, ether, acetone, slightly soluble in water.
- Flammable and can form explosive peroxides on exposure to air.
- Toxic and may be carcinogenic.

Applications


- Furan is a precursor for solvent THF & pharmaceutical & agrochemical compounds.
- Furan ring system is found in some of the natural products & medicinal compounds, for eg.
- Perillene (a plant metabolite)
- Ranitidine (medicine used for treatment of stomach ulcers)

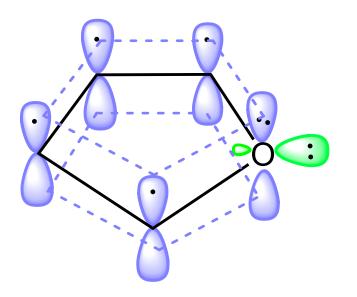
Structure

- Molecular Formula: C₄H₄O.
- Furan is Cyclic, pentagonal, planar, with four sp² hybridised carbon atoms
 & one sp² hybridised oxygen atom.
- Each Carbon is attached to 1 hydrogen atom.

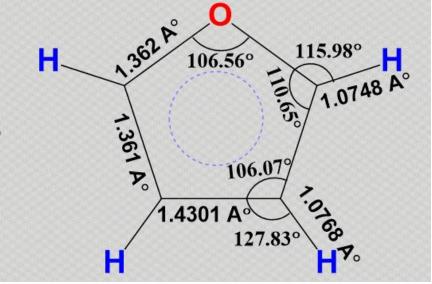

Each of the two α carbon atoms have three sp² hybrid orbitals, one of which is utilized for C-C σ bond formation by overlap with one of the three sp² hybrid orbitals of the adjacent β carbon atom. The second sp² hybrid orbital overlaps with 1s orbital of hydrogen to form C-H σ bond. The third sp² hybrid orbital is utilized for C-O σ bond formation by overlap with one of the three sp² hybrid orbitals of oxygen.

We have already seen that the β carbon atom utilises one of its sp² hybrid orbitals for C-C σ bond formation with one of the sp² hybrid orbitals of adjacent α Carbon atom. The second sp² hybrid orbital overlaps with 1s orbital of hydrogen to form C-H σ bond. The third sp² hybrid orbital is utilized for C-C σ bond formation by overlap with one of the three sp² hybrid orbitals of adjacent β ' carbon atom.

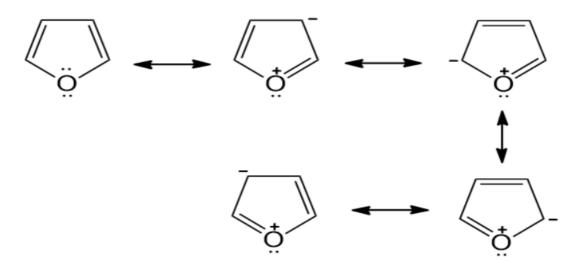
The geometry at both the α carbon atoms and at both β carbon atoms is same (there is a mirror plane bisecting the molecule passing through centre of oxygen atom). The oxygen atom has three sp² hybrid orbitals, two of which having one electron each are utilised for C-O σ bond formation by overlap with sp² hybrid orbitals of α and α' carbon atoms. The third sp² hybrid orbital


contains a lone pair of electrons which is unshared. Besides this oxygen atom has a p orbital with a pair of electrons. This p orbital is perpendicular to the sp² orbital containing unshared pair of electrons and to the plane of the ring as well.

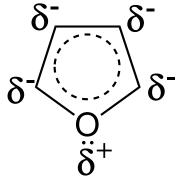
Each carbon atom also has a p orbital containing single electron.


Orbital structure of furan

- p orbital of O with 2 electrons & p orbital with 1 electron on each C overlap to form cyclic π electron cloud above & below the plane of ring.
- The electron pair in p orbital of O constitute aromatic sextet.
- (no. of $\pi e^{-} = 6 \pi e^{-}$:Hückel's no)
- The 6 p orbitals are mutually parallel & perpendicular to the plane of ring. sp² orbital of oxygen containing the lone pair is perpendicular to the p orbitals & this lone pair of electrons does not participate in delocalisation.


Thus furan is cyclic, planar, conjugated and has Hückel's no of pi electrons. (4n + 2) π e⁻ = 6 π e⁻

Furan is 5-membered **aromatic** heterocycle.


Equilibrium geometries of Furan

Resonance: The aromaticity in furan can be represented by the following resonance contributors.

- The Resonance hybrid structure of furan is confirmed by measurement of bond length by X ray analysis
- It is important to note that C-O bond length in furan (1.362 A⁰) < normal C-O single bond length (1.43 A⁰)

• C-O bond : has significant double bond character.

Resonance hybrid of Furan


Stability

- Delocalization of the π electrons stabilizes the ring.
- Heats of combustion indicate resonance stabilization for furan to be 16 k cal/mol (resonance energy) which is more than most conjugated dienes (about 3 kcal/mol). Hence it tends to undergo reactions such as electrophilic substitution in which the stabilized ring is retained. However resonance energy for benzene (36 k cal/mole) > resonance energy for furan.

Benzene is more aromatic and stable than furan.

Industrial source: on industrial scale, typically Furan is prepared by 2 methods

1. The Pd-catalyzed decarbonylation of furfural

- In a typical procedure, furfural is refluxed under pressure at 200° C in presence of supported Pd catalyst and alkali metal carbonate.
- Furfural decomposes on Pd surface to furan & CO
- Furan and CO thus formed are continuously removed from the reaction mixture by distillation.
- A typical productivity of 4–10 kg of furan /g of Pd is obtained.

2. Partial Oxidation of 1,3-Butadiene

 Another method involves a low-temperature (90–120 ° C) copper catalyzed partial oxidation of 1,3-butadiene, with maximum butadiene conversion of 20 %