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Notes  

Standard Scores 

Simply stated, a standard score is a raw score that has been converted from one 

scale to another scale, where the latter scale has some arbitrarily set mean and 

standard deviation. Why convert raw scores to standard scores? Raw scores may 

be converted to standard scores because standard scores are more easily 

interpretable than raw scores. With a standard score, the position of a 

testtaker’s performance relative to other testtakers is readily apparent. 

Different systems for standard scores exist, each unique in terms of its 

respective mean and standard deviations. We will briefly describe z scores, T 

scores, stanines, and some other standard scores. First for consideration is the 

type of standard score scale that may be thought of as the zero plus or minus 

one scale. This is so because it has a mean set at 0 and a standard deviation set 

at 1. Raw scores converted into standard scores on this scale are more popularly 

referred to as z scores. Although percentiles are the most popular type of 

transformed score, standard scores exemplify the most desirable psychometric 

properties. A standard score uses the standard deviation of the total distribution 

of raw scores as the fundamental unit of measurement. The standard score 

expresses the distance from the mean in standard deviation units. For example, 

a raw score that is exactly one standard deviation above the mean converts to a 

standard score of +1.00. A raw score that is exactly one-half a standard deviation 

below the mean converts to a standard score of -.50. Thus, a standard score not 



only expresses the magnitude of deviation from the mean, but the direction of 

departure (positive or negative) as well. Computation of an examinee’s standard 

score (also called a z score) is simple: Subtract the mean of the normative group 

from the examinee’s raw score and then divide this difference by the standard 

deviation of the normative group. Standard scores possess the desirable 

psychometric property of retaining the relative magnitudes of distances 

between successive values found in the original raw scores. This is because the 

distribution of standard scores has exactly the same shape as the distribution of 

raw scores. As a consequence, the use of standard scores does not distort the 

underlying measurement scale. This fidelity of the transformed measurement 

scale is a major advantage of standard scores over percentiles and percentile 

ranks. As previously noted, percentile scores are very distorting, especially at 

the extremes. A specific example will serve to illustrate the non-distorting 

feature of standard scores. Consider four raw scores of 55, 60, 70, and 80 on a 

test with mean of 50 and standard deviation of 10. The first two scores differ by 

5 raw score points, while the last two scores differ by 10 raw score points—twice 

the difference of the first pair. When the raw scores are converted to standard 

scores, the results are +0.50, +1.00, +2.00, and +3.00, respectively. The reader 

will notice that the first two scores differ by 0.50 standard scores, while the last 

two scores differ by 1.00 standard scores—twice the difference of the first pair. 

Thus, standard scores always retain the relative magnitude of differences found 

in the original raw scores. Standard score distributions possess important 

mathematical properties that do not exist in the raw score distributions. When 

each of the raw scores in a distribution is transformed to a standard score, the 

resulting collection of standard scores always has a mean of zero and a variance 

of 1.00. Because the standard deviation is the square root of the variance, the 

standard deviation of standard scores (11.00) is necessarily 1.00 as well. One 

reason for transforming raw scores into standard scores is to depict results on 

different tests according to a common scale. If two distributions of test scores 

possess the same form, we can make direct comparisons on raw scores by 

transforming them to standard scores. Suppose, for example, that a first-year 

college student earned 125 raw score points on a spatial thinking test for which 

the normative sample averaged 100 points (with SD of 15 points). Suppose, in 

addition, he earned 110 raw score points on a vocabulary test for which the 

normative sample averaged 90 points (with SD of 20 points). In which skill area 

does he show greater aptitude, spatial thinking or vocabulary? 



If the normative samples for both tests produced test score distributions of the 

same form, we can compare spatial thinking and vocabulary scores by 

converting each to standard scores. The spatial thinking standard score for our 

student is (125 - 100)>15 or 1.67, whereas his vocabulary standard score is (110 

- 90)>20 or +1.00. Relative to the normative samples, the student has greater 

aptitude for spatial thinking than vocabulary. But a word of caution is 

appropriate when comparing standard scores from different distributions. If the 

distributions do not have the same form, standard score comparisons can be 

very misleading. When two distributions of test scores do not possess the same 

form, equivalent standard scores do not signify comparable positions within the 

respective normative samples.  

z Scores 

A z score results from the conversion of a raw score into a number indicating 

how many standard deviation units the raw score is below or above the mean 

of the distribution. Let’s use an example from the normally distributed “National 

Spelling Test” data in Figure 3–7 to demonstrate how a raw score is converted 

to a z score. We’ll convert a raw score of 65 to a z score by using the formula 

Standard Score = Z = X – M/SD In essence, a z score is equal to the difference 

between a particular raw score and the mean divided by the standard deviation. 

In the preceding example, a raw score of 65 was found to be equal to a z score 

of +1. Knowing that someone obtained a z score of 1 on a spelling test provides 

context and meaning for the score. Drawing on our knowledge of areas under 

the normal curve, for example, we would know that only about 16% of the other 

testtakers obtained higher scores. By contrast, knowing simply that someone 

obtained a raw score of 65 on a spelling test conveys virtually no usable 

information because information about the context of this score is lacking. 

In addition to providing a convenient context for comparing scores on the same 

test, standard scores provide a convenient context for comparing scores on 

different tests. As an example, consider that Crystal’s raw score on the 

hypothetical Main Street Reading Test was 24 and that her raw score on the 

(equally hypothetical) Main Street Arithmetic Test was 42. Without knowing 

anything other than these raw scores, one might conclude that Crystal did better 

on the arithmetic test than on the reading test. Yet more informative than the 

two raw scores would be the two z scores. Converting Crystal’s raw scores to z 

scores based on the performance of other students in her class, suppose we find 

that her z score on the reading test was 1.32 and that her z score on the 



arithmetic test was −0.75. Thus, although her raw score in arithmetic was higher 

than in reading, the z scores paint a different picture. The z scores tell us that, 

relative to the other students in her class (and assuming that the distribution of 

scores is relatively normal), Crystal performed above average on the reading test 

and below average on the arithmetic test. An interpretation of exactly how 

much better she performed could be obtained by reference to tables detailing 

distances under the normal curve as well as the resulting percentage of cases 

that could be expected to fall above or below a particular standard deviation 

point (or z score). 

T Scores 

If the scale used in the computation of z scores is called a zero plus or minus one 

scale, then the scale used in the computation of T scores can be called a fifty 

plus or minus ten scale; that is, a scale with a mean set at 50 and a standard 

deviation set at 10. Devised by W. A. McCall (1922, 1939) and named a T score 

in honor of his professor E. L. Thorndike, this standard score system is composed 

of a scale that ranges from 5 standard deviations below the mean to 5 standard 

deviations above the mean. Thus, for example, a raw score that fell exactly at 5 

standard deviations below the mean would be equal to a T score of 0, a raw 

score that fell at the mean would be equal to a T of 50, and a raw score 5 

standard deviations above the mean would be equal to a T of 100. One 

advantage in using T scores is that none of the scores is negative. By contrast, in 

a z score distribution, scores can be positive and negative; this can make further 

computation cumbersome in some instances. Formula : - 

                      T = 10 ( X – M ) + 50  

                                    SD 

Other Standard Scores 

Numerous other standard scoring systems exist. Researchers during World War 

II developed a standard score with a mean of 5 and a standard deviation of 

approximately 2. Divided into nine units, the scale was christened a stanine, a 

term that was a contraction of the words standard and nine. 

Stanine scoring may be familiar to many students from achievement tests 

administered in elementary and secondary school, where test scores are often 

represented as stanines. Stanines are different from other standard scores in 



that they take on whole values from 1 to 9, which represent a range of 

performance that is half of a standard deviation in width. 

The 5th stanine indicates performance in the average range, from 1/4 standard 

deviation below the mean to 1/4 standard deviation above the mean, and 

captures the middle 20% of the scores in a normal distribution. The 4th and 6th 

stanines are also 1/2 standard deviation wide and capture the 17% of cases 

below and above (respectively) the 5th stanine. Another type of standard score 

is employed on tests such as the Scholastic Aptitude Test (SAT) and the Graduate 

Record Examination (GRE). Raw scores on those tests are converted to standard 

scores such that the resulting distribution has a mean of 500 and a standard 

deviation of 100. If the letter A is used to represent a standard score from a 

college or graduate school admissions test whose distribution has a mean of 500 

and a standard deviation of 100, then the following is true: (A = 600) = (z = 1) = 

(T = 60) Have you ever heard the term IQ used as a synonym for one’s score on 

an intelligence test? Of course you have. What you may not know is that what 

is referred to variously as IQ, deviation IQ, or deviation intelligence quotient is 

yet another kind of standard score. For most IQ tests, the distribution of raw 

scores is converted to IQ scores, whose distribution typically has a mean set at 

100 and a standard deviation set at 15. Let’s emphasize typically because there 

is some variation in standard scoring systems, depending on the test used. The 

typical mean and standard deviation for IQ tests results in approximately 95% of 

deviation IQs ranging from 70 to 130, which is 2 standard deviations below and 

above the mean. In the context of a normal distribution, the relationship of 

deviation IQ scores to the other standard scores we have discussed so far (z, T, 

and A scores). 

Finally, we give brief mention to three raw score transformations that are mainly 

of historical interest. The stanine (standard nine) scale was developed by the 

United States Air Force during World War II. In a stanine scale, all raw scores are 

converted to a single-digit system of scores ranging from 1 to 9. The mean of 

stanine scores is always 5, and the standard deviation is approximately 2. The 

transformation from raw scores to stanines is simple: The scores are ranked 

from lowest to highest, and the bottom 4 percent of scores convert to a stanine 

of 1, the next 7 percent convert to a stanine of 2, and soon. The main advantage 

of stanines is that they are restricted to single-digit numbers. This was a 

considerable asset in the premodern computer era in which data was 

keypunched on Hollerith cards that had to be physically carried and stored on 

shelves. Because a stanine could be keypunched in a single column, far fewer 



cards were required than if the original raw scores were entered. Statisticians 

have proposed several variations on the stanine theme. Canfield proposed the 

10-unit sten scale, with 5 units above and 5 units below the mean. Guilford and 

Fruchter proposed the C scale consisting of 11 units. Although stanines are still 

in widespread use, variants such as the sten and C scale never roused much 

interest among test developers. 

Standard scores converted from raw scores may involve either linear or 

nonlinear transformations. A standard score obtained by a linear transformation 

is one that retains a direct numerical relationship to the original raw score. The 

magnitude of differences between such standard scores exactly parallels the 

differences between corresponding raw scores. Sometimes scores may undergo 

more than one transformation. For example, the creators of the SAT did a 

second linear transformation on their data to convert z scores into a new scale 

that has a mean of 500 and a standard deviation of 100. A nonlinear 

transformation may be required when the data under consideration are not 

normally distributed yet comparisons with normal distributions need to be 

made. In a nonlinear transformation, the resulting standard score does not 

necessarily have a direct numerical relationship to the original, raw score. As the 

result of a nonlinear transformation, the original distribution is said to have been 

normalized. Normalized standard scores Many test developers hope that the 

test they are working on will yield a normal distribution of scores. Yet even after 

very large samples have been tested with the instrument under development, 

skewed distributions result. What should be done? One alternative available to 

the test developer is to normalize the distribution. Conceptually, normalizing a 

distribution involves “stretching” the skewed curve into the shape of a normal 

curve and creating a corresponding scale of standard scores, a scale that is 

technically referred to as a normalized standard score scale. 

Normalization of a skewed distribution of scores may also be desirable for 

purposes of comparability. One of the primary advantages of a standard score 

on one test is that it can readily be compared with a standard score on another 

test. However, such comparisons are appropriate only when the distributions 

from which they derived are the same. In most instances, they are the same 

because the two distributions are approximately normal. But if, for example, 

distribution A were normal and distribution B were highly skewed, then z scores 

in these respective distributions would represent different amounts of area 

subsumed under the curve. A z score of −1 with respect to normally distributed 

data tells us, among other things, that about 84% of the scores in this 



distribution were higher than this score. A z score of −1 with respect to data that 

were very positively skewed might mean, for example, that only 62% of the 

scores were higher. 

For test developer’s intent on creating tests that yield normally distributed 

measurements, it is generally preferable to fine-tune the test according to 

difficulty or other relevant variables so that the resulting distribution will 

approximate the normal curve. That usually is a better bet than attempting to 

normalize skewed distributions. This is so because there are technical cautions 

to be observed before attempting normalization. For example, transformations 

should be made only when there is good reason to believe that the test sample 

was large enough and representative enough and that the failure to obtain 

normally distributed scores was due to the measuring instrument. 
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