Quadrant II – Transcript and Related Materials

Programme: Bachelor of Commerce(First Year)

Subject: Mathematics

Paper Code: CAC101

Paper Title: Commercial Arithmetic-I(CC4)

Unit: I

Module Name: Testing of validity of an Argument (1)

Module No: 18

Name of the Presenter: Varada A. Kalas

Notes:

An argument is said to be *valid* if the conclusion is true when its all premises are true. An argument is valid if and only if its conclusion follows from its premises. Otherwise argument is said to be *invalid* or *fallacy*.

i.e., all the premises are true and the conclusion is false.

To check the validity of an argument we use truth tables. Also a result called **Fundamental Principle of Argumentation.**

Critical Rows

The rows of the truth-table are called *Critical Rows* for which all the premises are True.

In the critical row if the conclusion is true then the given argument is valid.

Otherwise argument is said to be invalid.

Example 1.

Find the critical rows in the truth-table of the following argument:

$$p \lor q$$
, $\sim p \vdash \sim q$

Sol. Let $P_1: p \lor q$ and $P_2: \sim p$ be the premises

and Q: $\sim q$, the conclusion.

Then the truth table will be of the type,

		$\boldsymbol{P_1}$	$\boldsymbol{P_2}$	Q	_
p	q	$p \lor q$	~ p	~ q	
T	T	T	F	F	
T	F	T	F	T	
F	T	T	T	F	√ critical row
F	F	F	Т	Т	

The critical row exists in the third row of the above table as all the premises (Highlighted truth values) are true.

Example 2.

Construct the truth-table for the following argument and find the critical rows in the following argument;

$$\sim p \lor q$$
, q , $p \to q \vdash p$

Here, $P_1: \sim p \vee q$, $P_2: q$ and $P_3: p \rightarrow q$ are the premises and the conclusion is Q: p

	P_2		P_1	P_3	Q	_
p	q	~ p	$\sim p \vee q$	$p \rightarrow q$	p	
T	T	F	T	T	Т	√ critical row
T	F	F	F	F	Т	
F	T	T	T	T	F	√ critical row
F	F	T	T	T	F	

In the above truth table, we find that the first and third rows as critical rows.

Method to check the Validity of an Argument using Truth-table:

- **Step 1.** If the given argument is in verbal form, convert it into the symbolic form.
- **Step 2.** Identify the premises and conclusion.
- **Step 3.** Prepare the truth-table showing the truth values of all the statements.

(simple statements, premises, conclusion)

- **Step 4.** Mark the critical rows where the premises are all true.
- **Step 5.** If the conclusion is true for each critical row then the argument is valid.
- **Step 6.** If the conclusion is false for the critical rows (i.e., false even in one critical row) then the argument is invalid.

Example 1.

Test the validity of the following argument:

$$p \wedge q$$
, $\sim p \rightarrow q \vdash q$

Here, premises are $P_1: p \wedge q$ and $P_2: \sim p \rightarrow q$

and the conclusion is $\,{\sf Q}:\,q\,$

_			P_1	P_2	Q	
p	q	~ p	p∧q	$\sim p \rightarrow q$	q	
Т	Т	F	T	T	T	$\sqrt{\text{critical row}}$
T	F	F	F	Т	F	
F	Т	Т	F	Т	Т	
F	F	Т	F	F	F	

In the above truth table all the premises are true in the first row.

Therefore first row is a critical row.

Since the conclusion is true in the first critical row,

∴ the given argument is valid.

Example 2.

Check the validity of the following argument:

$$p \rightarrow q$$
, $\sim p \lor q \quad \vdash \quad \sim q$

Here, premises are $P_1: p \rightarrow q$ and $P_2: \sim p \vee q$

conclusion is $Q: \sim q$

We prepare the truth table and mark the critical rows.

			P_1	P_2	Q	_
p	q	~ p	p o q	$\sim p \vee q$	~ q	
T	Т	F	T	T	F	√ critical row
T	F	F	F	F	Т	
F	Т	Т	T	T	F	√ critical row
F	F	Т	T	T	T	√ critical row

We observe that in the above truth table there are three critical rows, first, third and fourth. But only in the fourth critical row conclusion is true.

∴ the given argument is invalid.

Finally, we can summarize that,

- the Truth-tables are used to test the validity of the arguments in mathematical logic.
- valid arguments preserve truth which we have noticed by testing the arguments.