Quadrant II - Notes

Paper Code : CAC101

Module Name: Introduction to Progressions, Definition of Arithmetic

Progression (A.P.), nth term of an A.P. and related examples

Progression:

It is a sequence of numbers in which the terms of the sequence follow a certain pattern.

Examples:

i) 3, 7, 11, 15, ... ii) 1, 3, 9, 27, ...

nth term of a sequence:

 $\mathbf{n^{th}}$ term of a sequence is denoted by $\mathbf{t_n}$. Example: $\mathbf{t_1}$ - First term $\mathbf{t_2}$ - Second term $\mathbf{t_3}$ - Third term and so on.

Arithmetic Progression (A.P.):

If the difference between any two consecutive terms of the sequence remains constant, then the terms of the sequence are said to be in **Arithmetic Progression (A.P.)**.

Examples:

9, 13, 17, 21, ...
 90, 80, 70, 60, ...

Formula for nth term of an Arithmetic Progression:

If 'a' is the first term of an Arithmetic Progression and 'd' is the common difference between any two consecutive terms of A.P., then the n^{th} term of an A.P. is given by $t_n = a + (n-1) d$ for all $n \ge 1$

where a is the first term and d= $t_n - t_{n-1}$ for all $n \ge 2$.

For example:

 $t_1 = a$ $t_2 = a + (2-1) d = a+d$ $t_3 = a + (3-1) d = a+2d$ and so on.

Problems based on nth term of an Arithmetic Progression:

```
1) Find t_{21} for the following Arithmetic Progression:

16, 20, 24, 28, ...

Solution:

a = 16 and d = 20-16 = 4

t_{21} = a+(21-1) d

= a+20d

= 16 + 20 \times 4

= 16 + 80

= 96
```

2) Which term of the A.P. 200, 196, 192, 188, ... is 124?

Solution:

```
a = 200 \qquad d = 196 - 200 = -4

t_n = a + (n-1) d

\therefore 124 = 200 + (n-1) \times -4

\therefore 124 = 200 - 4n + 4

\therefore 124 = 204 - 4n

\therefore 4n = 204 - 124

\therefore n = 20
```

Therefore 20th term of the given A.P. is 124.

```
3) If for an A.P., t_{32} = 272 and t_9 = 88, then find t_4.

Solution:

t_{32} = 272

\therefore a + 31d = 272

t_9 = 88

\therefore a + 8d = 88

a + 31d = 272

a + 8d = 88

- - - -

23d = 184
```

d = 8Substituting d=8 in a + 31d = 272 we get, $a + 31 \times 8 = 272$ a + 248 = 272 $\begin{array}{ll} \therefore & a = 272 - 248 \\ \therefore & a = 24 \end{array}$

$$t_4 = a+3d$$

= 24 + 3× 8
= 24 + 24
∴ $t_4 = 48$

.