
Hello students, welcome to module number 9 of unit 2 of section 2 of this paper. Mathematical
Physics and Electromagnetic Theory one. The name of this module is Laplace's equation in one
independent variable. I'm Yatin Desai Assistant Professor in Physics Chowgule College,
Margao. In this module, you will learn about the first uniqueness theorem, the second
uniqueness theorem and Laplace’s equation in one independent variable. At the end of this
module you will be able to prove the first uniqueness theorem, you will be able to prove the
second uniqueness theorem and also you'll be able to solve Laplace’s equation in one
independent variable for rectangular cartesian coordinate system, spherical polar coordinate
system and cylindrical polar coordinate system.
First we start with the first uniqueness theorem. The statement is if phi1, phi2, and so on, up to
phi n are all solutions of Laplace's equation then phi equals C1phi1 plus C2phi2 plus so on up to
Cn phi n is also a solution, where C1, C2, C3 and so on are the arbitrary constants, so phi1,
phi2, phi3 are the solutions after multiplying those solutions with appropriate constants and then
adding them together, we get the total solution.
To prove this, we take del square of phi. If we take del square of phi, we operate it on del square
phi, which is given as this C1phi1 plus del square phi2 plus so one up to del square Cn phi n
and since C1, C2 are all constants, we can bring it out of del square operator and write it as C1
del square phi1 + C2 del square phi2 plus so on up to Cn del square phi n.
Now this represents the Laplace's equation and we know that del square of the scalar potential
in the Laplacian equation is 0. So all these terms on the right hand side are zero. So we get del
square phi is also equal to 0, so that proves the statement that if phi1, phi2 and so on up to phi
n are all the solutions of Laplace’s equation, then phi, which is the linear combination of C1phi1
plus C2phi2 and so on up to Cn phi n is also the solution.
Next, we discuss the second uniqueness theorem. Two solutions of Laplace’s equation that
satisfy the same boundary condition differ at most by an additive constant. So to prove this we
assume that let phi1and phi2 are two solutions of Laplace’s equation in some volume V not
exterior to the surfaces S1, S2, S3 and so on up to Sn. phi1, phi2 satisfy the same boundary
conditions on various surfaces and let phi equals phi1 minus phi2 such that, either phi or normal
component of gradient of phi that is n cap dot del phi vanishes on the boundary.
So since phi is equal to phi1 minus phi2, it also follows that del square of phi which equals del
square phi1 minus del square phi2 also equal to 0.
Now consider a vector which is phi del phi. Phi is the scalar but gradient of a scalar is a vector
and to that I'm multiplying a scalar, so altogether this is a vector and we apply Gauss’s law to
this vector. So which says that volume integral of divergence of a vector or a given volume is
surface integral of normal component of the vector over a given surface. So integral over V not
del dot phi del phi integrated over d tau. This is the divergence of this vector equals surface
integral of phi del phi dot n cap integrated over d Sigma. So this is the normal component of the
vector. Now we have chosen the solutions phi1 minus phi2 such that the normal component of
this vector is zero. Therefore the volume integral del dot phi del phi d tau is equal to 0. We use
one vector identity that del dot phi del phi is phi del square phi plus del phi whole square. And
in the last equation, in the integrand, we had del dot phi del phi. But del square phi vanishes at
all the points in V not it being the solution of the Laplace’s equation.
Therefore, we have volume integral of del phi whole square d tau equal to zero. Since del phi



whole square must be either positive or zero at all points in V not and since it's integral is 0, only
del phi whole square is 0 is only the possibility. If del phi whole square is 0. If you take a square
root on both sides, then del phi equal to 0. That means a differentiation of phi is 0 means that
five must be some constant and we write that phi as some constant C and phi we had written for
phi1 minus phi2. Therefore phi 1 minus phi2 is equal to a constant C. Which proves second
uniqueness theorem.
Next, we saw Laplace's equation in one independent variable. We do it first in the Cartesian
coordinate system. In the Cartesian coordinate system, we write del square U equal to 0 as d
square U by d x square equal to 0. Del square in one dimensional case,we write it as d square
by dx square and it's a total differentiation. If you integrate it once, you'll get it as dU by dx equal
to a (please read as a instead of C1). And if you integrate it again, you will get it as. a x + b,
where a is a constant and b is also a constant. a and b are constants of integration, found
either by specifying the values of the potential at two different points, or by specifying electric
field at some point and the value of the potential at same point or some other point. So a and b,
U = ax + b, represents the equation of a
straight line. That means U is increasing in space. In some cases, U may be either a constant or
it may also decrease, but it cannot have a maxima and the minima at the intermediate points. It
can have the maxima or the minima only at the endpoints, and this is also valid for the two
dimensional case as well as the three dimensional case.
Next we obtain the solution of the Laplace’s equation in one dimension, by using spherical polar
coordinates. To obtain the solution in one dimension r, we assume theta and phi are
independent variables. So we write the equation as 1 by r square d by dr of r-square dU by dr
equal to 0. If you multiply this r square onto the other side, it will go to zero. Therefore, d by d r
of r square dU by dr, will be equal to 0 and we write r square d U by d r as a constant a.
If you integrate it r square dU by d r will be equal to a.So if you take that r square onto the other
side, we will get it at du by d r as a r raised to minus 2. So, we further rearrange this equation
and integrate it on both sides. So the integral of dU will be integral a r raised minus 2 d r. So it
will be U = minus a r raised to minus 1 + b or U = minus a by r + b. where a and b are the
constants.
We also obtain the solution of the Laplace’s equation in cylindrical polar coordinates. To obtain
the solution in one dimension r, here we assume theta and z as independent variables. So we
write that equation as 1 by r d by d r times r dU by d r = 0. So therefore it follows that d by d r of
r dU by d r equal to 0 or integrating on both the sides we get r d U by d r equal to a.
Therefore, d U by d r equals a by r. And after integrating we get U as a integral of d r by r which
is written as a ln of r + b. where a and b are the constants.
So we have obtained the solutions of Laplace’s equation in one dimension in case of the
rectangular cartesian coordinate system, the spherical polar coordinate system and the
cylindrical polar coordinate system.
These are the references for this module. Thank you.


