
Hello students. Welcome to this course, Mathematical Physics and Electromagnetic Theory – I. This is 
Section II, Electromagnetic Theory – I and unit 4, Microscopic Theory of Dielectrics. The name of the 
module is Polar molecules, Langevin- Debye formula. I am Yatin Desai, from Chowgule College, Margao, 
Goa.  
Outline of this module is Polar molecules in a dielectric and Langevin- Debye formula. at the end of this 
module, you'll be able to comprehend the polarizability in polar molecules and derive an expression for 
Langevin-Debye formula. 
Polar Molecules in a Dielectric: The expression for polarization is dipole moment per unit volume. 

Therefore, we write the polarization vector 𝑃 ሬሬሬ⃗  as dipole moment 𝑃௠
ሬሬሬሬ⃗ ; sum of the dipole moments, all the 

dipole moments which are contained in the volume ∆𝑉. 

So, polarization vector; 𝑃 ሬሬሬ⃗ is given as 
∑ ௉೘ሬሬሬሬሬሬ⃗

∆௏
. If we have number of dipoles in a given volume of a dielectric, 

and in the absence of the electric field, if these dipoles are randomly oriented, then the total dipole moment 
is zero. That is, we can write 𝑃 ሬሬሬ⃗ = 0 when 𝐸௘௫௧

ሬሬሬሬሬሬሬ⃗ = 0. That is, in absence of the external electric field. So, 
these dipoles cancel the effect of each other, which is shown in this diagram. But when the external (field) 
electric field is applied, all its molecular dipoles experience a torque, which is given by: 𝑃଴

ሬሬሬሬ⃗ × 𝐸௠
ሬሬሬሬሬ⃗  , so, it is 

𝑃଴𝐸௠ cos 𝜃 ; which try to rotate dipoles and make them parallel to the applied field. At sufficiently strong 
electric field we expect all the dipoles to be perfectly aligned and polarization 𝑃 ሬሬሬ⃗  to attain the highest 
saturation value. But this is not observed in practice with sufficiently strong field. Polarization is far from 
saturation point. This lack of complete alignment is due to the thermal energy of molecules which tend to 
produce randomness in their orientation.  
The average dipole moment per molecule is calculated using the principle of statistical mechanics, which 

states that at temperature T, the probability of finding a molecule with energy  is proportional to 𝑒ି
ഘ

಼೅, 

where, K is the Boltzmann constant, T is absolute temperature and total molecular energy which is  given 

as K + P; K is the kinetic energy and P is the potential energy.  

The potential energy of permanent dipole 𝑃଴
ሬሬሬሬ⃗  in the electric field 𝐸௠

ሬሬሬሬሬ⃗  is; 𝜔௉ = −𝑃଴
ሬሬሬሬ⃗ . 𝐸௠

ሬሬሬሬሬ⃗ = −𝑃଴𝐸௠𝑐𝑜𝑠𝜃; where 𝜃 
is an angle between 𝑃଴

ሬሬሬሬ⃗  and electric field 𝐸௠
ሬሬሬሬሬ⃗ .   

Effective dipole moment of a molecule is its component in the direction of 𝐸௠
ሬሬሬሬሬ⃗  i.e., P0cos and it is different 

for different molecules. So, the average value of effective dipole moment is found as; 〈𝑃଴𝑐𝑜𝑠𝜃〉 which is 

equal to integral of 𝑃଴𝑐𝑜𝑠𝜃 times that factor 𝑒ି
ഘ

಼೅ over all 𝑑𝜔′𝑠 for the (full) all the energies (divide by) to 

normalise the result we write it as divided by; ∫ 𝑒ି
ഘ

಼೅𝑑𝜔. That dω is the elementary solid angle which is  

 given as;  
ௗ௦

௥మ  and 𝑑𝑠 is (a) the width of that circular strip which is 2𝜋 times the radius of that  

circular strip which is (𝑟𝑠𝑖𝑛𝜃); 𝑟  is the radius of that circle and 𝑟𝑑𝜃 is the width of the strip. So, it is  
ଶగ(௥௦௜௡ఏ)௥ௗఏ

௥మ so this 𝑟ଶ when we cancel with the numerator, we get it as 2𝜋𝑠𝑖𝑛𝜃𝑑𝜃.   

Therefore, 〈𝑃଴𝑐𝑜𝑠𝜃〉 is ∫ 𝑃଴𝑐𝑜𝑠𝜃𝑒ି
ഘ

಼೅𝑠𝑖𝑛𝜃𝑑𝜃  divided by ∫ 𝑒ି
ഘ

಼೅𝑠𝑖𝑛𝜃𝑑𝜃. In this equation (1), if you look at this 

factor, 𝑒ି
ഘ

಼೅; 𝜔 is the sum of ୩  +  ୮. So, in 𝑒ି
ౡ శ ౦

಼೅ ; we can bring that part; 𝑒ି
ే
಼೅ out of this integral 

because the kinetic energy is not the function of . Therefore, it can be taken out of the integral both in the 

numerator as well as the denominator and we can cancel them out. So, what will remain is the 〈𝑃଴𝑐𝑜𝑠𝜃〉 =

∫ ௉బ௖௢௦ఏ௘
ష

ഘು
಼೅ଶగ௦௜௡ఏௗఏ

∫ ௘
ష

ഘು
಼೅ ଶగ௦௜௡ఏௗఏ

; because, 𝑒ି
ే
಼೅ part is cancelled. Since, the potential energy is −𝑃଴𝐸௠𝑐𝑜𝑠𝜃; once we 

replace in previous equation, we get 〈𝑃଴𝑐𝑜𝑠𝜃〉 =
௉బ ∫ ௘

ುబಶ೘೎೚ೞഇ
಼೅ ௖௢௦ఏ௦௜௡ఏௗఏ

∫ ௘
ುబಶ೘೎೚ೞഇ

಼೅ ௦௜௡ఏௗఏ

. Here, we had e raise to minus and 

we are writing  ୮ also as minus. So, that minus of minus will become plus in both numerator as well as 

denominator. To solve this integral further, we replace 
௉బா೘

௄்
 by 𝑦. Therefore, equation number (2) will look 

like 〈𝑃଴𝑐𝑜𝑠𝜃〉 =
௉బ ∫ ௘೤೎೚ ௖௢௦ఏ௦௜௡ఏௗఏ

∫ ௘೤೎೚ೞഇ௦௜௡ఏௗఏ
. This is equation # (3). Now, to solve this again we use the method of 



substitution. We substitute, 𝑐𝑜𝑠𝜃 as 𝑥. Therefore, −𝑠𝑖𝑛𝜃𝑑𝜃 = 𝑑𝑥. To take the average, we integrate this 

equation from  = 0 to  = ; though it is not shown in this particular equation. Therefore, when we change 

that 𝑐𝑜𝑠𝜃 to 𝑥; we have to substitute for  = 0, the lower limit we have to substitute x = 1 and for the upper 

limit  = ; we have to substitute x = -1. So, with these substitutions and the change in limit, we write that 

equation (3) in the next step as, average of 𝑃଴𝑐𝑜𝑠𝜃 equals 𝑃଴ ∫ 𝑒௬௫𝑥(−𝑑𝑥)
ଵ

ିଵ
 because 

𝑠𝑖𝑛𝜃𝑑𝜃 which is written as − 𝑑𝑥, divided by ∫ 𝑒௬௫(−𝑑𝑥)
ଵ

ିଵ
. We can cancel this minus sign, both in numerator 

and denominator and we get this equation as equal to 𝑃଴ ∫ 𝑒௬௫𝑥𝑑𝑥
ଵ

ିଵ
 divided by ∫ 𝑒௬௫ଵ

ିଵ
𝑑𝑥. Limits of the 

integral are from minus 1 to plus 1. This is equation number (4). This equation is further solved by using 

integration by parts. So, once we solve this integration by parts where all steps are shown here, we get the 

average value of𝑃଴𝑐𝑜𝑠𝜃 as 𝑃଴ ቂ
{௘೤ା௘ష೤}

{௘೤ି௘ష೤}
−

ଵ

௬
ቃ. Now, we have, the cosine hyperbolic of a function say , cos 

hyperbolic of  as 
௘ഇା௘షഇ

ଶ
 and 𝑠𝑖𝑛 hyperbolic 𝜃 =

௘ഇି௘షഇ

ଶ
. Therefore, if you divide, say this cos hyperbolic , 

(divide) by sine hyperbolic ; we will get, 
௘ഇା௘షഇ

௘ഇି௘షഇ, because that 2 will get cancelled. So, that cot hyperbolic  

is given as, 
௘ഇା௘షഇ

௘ഇି௘షഇ. So, if you look at this term here, which is similar to the first term inside this bracket, 

therefore, we write equation (5) as; 〈𝑃଴𝑐𝑜𝑠𝜃〉 = 𝑃଴ ቂ𝑐𝑜𝑡ℎ𝑦 −
ଵ

௬
ቃ . This equation (6) is also known as the 

Lagrangian formula. 

Now when we try to plot this average value of 
〈௉బ௖௢௦ఏ〉

௉బ
 and y on this side, where y is given as; 

௉బா೘

௄்
. So, it will 

increase linearly. Then it will increase gradually and then it will saturate. So, this is the nature of the plot 

(when we get) when we plot 
〈௉బ௖௢௦ఏ〉

௉బ
 against y. For most dielectric, P0 is such that, y is much smaller than 1, 

that is y much much smaller 1. Therefore, Cot hyperbolic of y which is given as 
௘೤ା௘ష೤

௘೤ି௘ష೤ when we expand this 

𝑒௬ in the form of the series and 𝑒ି௬ in the form of the series as (given) shown here. Then, we notice that + 

y, – y is getting cancelled. 
௬య

ଷ!
 and −

௬య

ଷ!
 is getting cancelled. Similarly, in the denominator, because there is a 

minus sign here, plus one and minus one is getting cancelled. Then, +
௬మ

ଶ!
 and this 

௬మ

ଶ!
 will get cancelled, and 

we have retained only the terms up to the third power of y, because y is much much less than one, 
because the higher orders will be very small number can be ignored in comparison with the other 

quantities. Therefore, cot hyperbolic of y is 1 + 1 two and 
௬మ

ଶ!
 + 

௬మ

ଶ!
 which is 𝑦ଶ. Similarly, (y + y) in the 

denominator, we have y minus of minus, + y; 2y. Minus 
௬య

ଷ!
, so, 

௬య

଺
+

௬య

଺
 which will be 

௬య

ଷ
. Now from here, if 

you take 2 common, it will be ቀ1 +
௬మ

ଶ
ቁ and 2𝑦 common will have ቀ1 +

௬మ

଺
ቁ. So, if you cancel two and two, 

you will have, 
ଵ

௬
ቀ1 +

௬మ

ଶ
ቁ ቀ1 +

௬మ

଺
ቁ

ିଵ

. So, if we expand it by using the binomial theorem, we'll get it as 

ଵ

௬
ቀ1 +

௬మ

ଶ
ቁ 𝑎𝑛𝑑 ቀ1 −

௬మ

଺
ቁ. If you multiply this, we'll get that Cot hyperbolic of y as 

ଵ

௬
ቀ1 +

௬మ

ଷ
ቁ. So, if you 

multiply this inside, we will get it as 
ଵ

௬
+

௬

ଷ
. This is equation #7. So, we write that Cot hyperbolic of y as 

ଵ

௬
+

௬

ଷ
 

in our previous equation, #6. Therefore, that equation #6 can now be written as average of 𝑃଴𝑐𝑜𝑠𝜃 as, 

𝑃଴ ቂ
ଵ

௬
+

௬

ଷ
𝑎𝑛𝑑 −

ଵ

௬
 which was already thereቃ. So, this −

ଵ

௬
  will now get cancelled with plus +

ଵ

௬
  and we'll get 

𝑃଴
௬

ଷ
, as average of 𝑃଴𝑐𝑜𝑠𝜃. Let us substitute back y which was given as; 

௉బா೘

௄்
. Therefore, average value of 

𝑃଴𝑐𝑜𝑠𝜃 will be 𝑃଴
ଶ ா೘

ଷ௄்
. We call this as equation #8.  Let N be number of molecules per unit volume. 

Therefore, the polarization magnitude of the polarization vector will be N times that 𝑃଴𝑐𝑜𝑠𝜃, average dipole 

moment. So, 
௉

ே
 is average of 𝑃଴𝑐𝑜𝑠𝜃, which is 

௉బ
మா೘

ଷ௄்
. 

௉

ே
is nothing but 𝑃௠ , the dipole moment which is ∝ 𝐸௠. 



Therefore, ∝ 𝐸௠  becomes 
௉బ

మா೘

ଷ௄்
. If you cancel that 𝐸௠ on both the sides, you’ll get ∝ as 

௉బ
మ

ଷ௄்
, which is 

equation #9 and we call it the orientational polarizability.  
Considering non-polar molecules only; which we have done in the previous module, ∝଴  is 4𝜋𝜀଴𝑅଴

ଷ, which 

we also call it as deformation polarizability. Therefore, the total molecular polarizability of a dielectric is; ∝ 

which is ∝଴+
௉బ

మ

ଷ௄்
. which is the sum of actually the deformation polarizability and the orientational 

polarizability. This formula is also called as Langevin-Debye equation. 

 

These are the references for this module. 

 

Thank you. 

 


