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Learning Outcomes

After studying this module you should be able to
@ Identify the Cauchy-Euler non-homogeneous DEs.

@ Write the Cauchy-Euler non-homogeneous DEs as linear DEs with
constant coefficients

@ Solve the the Cauchy-Euler non-homogeneous DEs of second order
using undetermined coefficients method.



Cauchy-Euler Equations

A linear differential equation of the form

dny dnfly

n n—1 _

anx v + ap_1x Jxn—1 +...a0y = g(x), (1)
where the coefficients a,, a,—1, ..., ag are constants, is known as a Cauchy-Euler

equation.

The degree k = n,n—1,...,1,0 of the monomial coefficients x* matches the

. .. k
order k of differentiation 9

dxk -




Second order Non-homogeneous Cauchy-Euler DEs

Consider second order non-homogeneous Cauchy-Euler equation

d’y dy
27 —_— p—
ax"— 3 + bx I + cy = Q(x),

where a, b, and ¢ are constants.



Method

To reduce equation (2) to the linear homogeneous differential equation with
constant coefficients. Substitute x = ef or t = log x. Then

dy dy gt dt 1 dy

dx  dt  dx xdt

I _dy
dx dt




d?y _d (ldy\ _d (1dy)dt
dx2  dx \xdt) dt \etdt/ dx






Steps to find the solution
@ Reduce the equation (2) to linear DE with constant coefficients.
@ Find the general solution of the homogeneous Euler equation i.e y..

© Using the method of undetermined coefficients or the method of variation
of parameters, find a particular solution depending on the right side of the
given non-homogeneous DE i.e. y,.

@ The general solution of equation (2) is

Y=YctVYp



Example (1)

Find the general solution of the differential equation:




Example (1)

Find the general solution of the differential equation:

Solution:
Let x = ef or t = log x then

W9 oty (o

ix - di. a2 de?




Example (Continued...)

Then the given equation (3) becomes

Ca/

dt?

The characteristic equation is

m>—2m+1=0

dy

2— +y=t

dt




Example (Continued...)

Then the given equation (3) becomes

d’y _dy
-z 27 = t.
dt? dt Ty

The characteristic equation is

m>-2m+1=0 = m=1,1

Thus, the complementary function y.(x) can be expressed as
Ye(t) = (a1 + cat)e’
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Example (Continued...)

yp(t) =At+ B
yp(t) = A
Yp(t) =0

Substituting the value of y,(t), y,(t), y,(t) in (4)
—2A+At+B=t

Comparing the coefficients and solving we get, A=1, B = 2.
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Example (Continued...)

Syp(t) =t+2,
the primitive is y(t) = yc(t) + yp(t) = (c1 + cot)et + t + 2.

2y(x) = (a1 + e2log x)x + log x + 2.




Example (2)
Find the general solution of the differential equation:
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Example (2)
Find the general solution of the differential equation:
d’y , , dy

1
2 —

Solution:
Let x = ef or t = log x then

dy _dy. 2ﬂ:<d2y dy)

dt2  dt

ix - di. a2




Example (Continued...)

Then the given equation (5) becomes

d’y  ,dy
243 oy =
dt? + dt ey

The characteristic equation is

m?+3m+2=0

e %t 42t




Example (Continued...)

Then the given equation (5) becomes

d%y dy -
F+3E+2y:e 2t | ot

The characteristic equation is

m+3m+2=0 = m=-2,-1

Thus, the complementary function y.(x) can be expressed as
Ve(t) = (cre™t + cpe2t)
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Example (Continued...)
yp(t) = t(Ae ") + Bt + C

yh(t) = —2t(Ae ") + Ae™?* + B
yi(t) = 4t(Ae~?") — 4(Ae?t)
Substituting the value of y,(t), y,(t),y,(t) in (6)
—Ae ' + 2Bt +3B+2c = e 2 + 2t

Comparing the coefficients and solving we get, A= -1, B=1C = _73




Example (Continued...)
cyp(t)=—te™2 4t — 3,




Example (Continued...)
cyp(t)=—te™2 4t — 3,

the primitive is y(t) = yc(t) + yp(t) = (cre™t + e 2f) — te 2+t — 3,

Ly =(2+%) - "’)%Jrlogx— 3.




A Different Form

A second order equation of the form

d? d
a(x—xo)2K}2/+b(x—xo)d—§+cy:O (7)

is also a Cauchy-Euler equation.Observe that (7) reduces to (2) when xo = 0.



Example
Solve the initial value problem

(1+x)%y" + (L +x)y —y =log(l+2x+x?), y(0)=1y'(0)=3, (8)

on the interval (—1, c0).
Solution:
Let 1+ x = ef or t = log(1 + x) then

d?y
2

dy dy. 5
(1+X)&—dt, (1+X) dX

d’y dy
dt2  dt

Also, log(1 + 2x + x?) = log(1 + x)2 = 2log(1 + x)




Example
Then the given equation (8) becomes

d’y
dt?

The characteristic equation is

m—-1=0

—y=2t




Example

Then the given equation (8) becomes

dy
2 y =2t
'he characteristic equation is

m—-1=0 = m=1,-1

Thus, the complementary function y.(x) can be expressed as
yc(t) = (clet T Cze_t)




Example (Continued...)
yp(t) =At+ B
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Example (Continued...)
yp(t) =At+ B
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Example (Continued...)

yp(t) =At+ B
yp(t) = A
Yp(t) =0

Substituting the value of y,(t), y,(t), y,(t) in (9)
—2A+At+B=t

Comparing the coefficients and solving we get, A= -2, B =0.




Example (Continued...)
s ye(t) = —2t,




Example (Continued...)

Sy =all+x)+

y/(X):Cl_(li—sz_

(1+X)

2
(1+x) "

the primitive is y(t) = yc(t) + yp(t) = cre’ + o™t — 2t.

— 2log(1 + x),




Example (Continued...)
Using initial conditions y(0) = 1 and y’(0) = 3 we have
a+o=1, cg—c—2=3

solving which we get ¢; = 3 and ¢, = —2, and hence the solution of the initial
value problem is

— log(1 + x)2.

Y0 =30+ 1) - ix)
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