Programme: Bachelor of Science

Subject : Mathematics

Paper Code : MTC 103

Semester : III

Paper Title : Differential Equations and Discrete Mathematics

Title of the Unit: Second Order Linear differential equations

Module Name : Linear ODEs with variable coefficients

Module No. : 14

Dr. Mamta Kumari Assistant Professor Department of Mathematics DCT's Dhempe College of Arts and Science Miramar,Panaji-Goa.

Outline

- Introduction
- Cauchy- Euler Equations
- Second Examples
- References

After studying this module you should be able to

After studying this module you should be able to

• Identify the Cauchy-Euler non-homogeneous DEs.

After studying this module you should be able to

- Identify the Cauchy-Euler non-homogeneous DEs.
- Write the Cauchy-Euler non-homogeneous DEs as linear DEs with constant coefficients

After studying this module you should be able to

- Identify the Cauchy-Euler non-homogeneous DEs.
- Write the Cauchy-Euler non-homogeneous DEs as linear DEs with constant coefficients
- Solve the the Cauchy-Euler non-homogeneous DEs of second order using undetermined coefficients method.

Cauchy-Euler Equations

A linear differential equation of the form

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots a_0 y = g(x), \tag{1}$$

where the coefficients $a_n, a_{n-1}, \ldots, a_0$ are constants, is known as a Cauchy-Euler equation.

Note

The degree k = n, n - 1, ..., 1, 0 of the monomial coefficients x^k matches the order k of differentiation $\frac{d^k y}{dx^k}$.

Second order Non-homogeneous Cauchy-Euler DEs

Consider second order non-homogeneous Cauchy-Euler equation

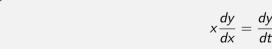
$$ax^2\frac{d^2y}{dx^2} + bx\frac{dy}{dx} + cy = Q(x), \tag{2}$$

where a, b, and c are constants.

Method

To reduce equation (2) to the linear homogeneous differential equation with constant coefficients. Substitute $x = e^t$ or $t = \log x$. Then

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{1}{x} \frac{dy}{dt}$$



$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{x}\frac{dy}{dt}\right) = \frac{d}{dt}\left(\frac{1}{e^t}\frac{dy}{dt}\right)\frac{dt}{dx}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{x}\frac{dy}{dt}\right) = \frac{d}{dt}\left(\frac{1}{e^t}\frac{dy}{dt}\right)\frac{dt}{dx} = \frac{1}{x^2}\left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right)$$

$$x^2\frac{d^2y}{dx^2} = \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right)$$

Steps to find the solution

- Reduce the equation (2) to linear DE with constant coefficients.
- ② Find the general solution of the homogeneous Euler equation i.e y_c.
- Using the method of undetermined coefficients or the method of variation of parameters, find a particular solution depending on the right side of the given non-homogeneous DE i.e. yp.
- The general solution of equation (2) is

$$y = y_c + y_p$$

Example (1)

Find the general solution of the differential equation:

Find the general solution of the differential equation:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$$

(3)

Example (1)

Find the general solution of the differential equation:

Solution:

Let
$$x = e^t$$
 or $t = \log x$ then

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$$

 $x\frac{dy}{dx} = \frac{dy}{dt}$; $x^2\frac{d^2y}{dx^2} = \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right)$

 $m^2 - 2m + 1 = 0$

Then the given equation (3) becomes

Then the given equation (3) becomes
$$d^2y$$

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = t.$$

The characteristic equation is

$$d^2y$$

$$d^2v$$

(4)

 $y_c(t) = (c_1 + c_2 t)e^t$

Then the given equation (3) becomes

$$\frac{d^2y}{d^2}$$

$$\frac{d^3}{dt^2} - 2^3$$

$$\frac{d^2y}{dt^2} - 2\frac{d^2y}{dt^2}$$

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = t.$$

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx^2}$$

Example (Continued...)

The characteristic equation is

 $m^2 - 2m + 1 = 0 \implies m = 1.1$

Thus, the complementary function $y_c(x)$ can be expressed as

(4)

Example (Continued...) $y_p(t) = At + B$

$$y_p(t) = At + B$$

 $y'_p(t) = A$

$$y_p(t) = At + B$$

$$y_p'(t) = A$$
$$y_p''(t) = 0$$

$$y_p(t) = At + B$$

Substituting the value of $y_p(t), y_p'(t), y_p''(t)$ in (4)

Comparing the coefficients and solving we get, A = 1, B = 2.

-2A + At + B = t

$$y_{n}'(t) = A$$

 $y_p''(t) = 0$

$$y_p'(t) = A$$

Example (Continued...) $\therefore y_p(t) = t + 2,$

$$\cdot v(t) = t \pm 2$$

$$v_n(t) = t + 2$$

$$\therefore y_p(t) = t + 2,$$

 $y(x) = (c_1 + c_2 \log x)x + \log x + 2.$

the primitive is $y(t) = y_c(t) + y_p(t) = (c_1 + c_2 t)e^t + t + 2$.

Example (2)

Find the general solution of the differential equation:

Find the general solution of the differential equation:
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \frac{1}{x^2} + 2\log x.$$

(5)

Example (2)

Find the general solution of the differential equation:

 $x\frac{dy}{dx} = \frac{dy}{dt}$; $x^2\frac{d^2y}{dx^2} = \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right)$

(5)

$$x^{2}\frac{d^{2}y}{dx^{2}} + 4x\frac{dy}{dx} + 2y = \frac{1}{x^{2}} + 2\log x.$$

Solution:

Let
$$x = e^t$$
 or $t = \log x$ then

Let
$$x = e^t$$
 or $t = \log x$ then

 $m^2 + 3m + 2 = 0$

Then the given equation (5) becomes

The characteristic equation is

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = e^{-2t} + 2t$$

(6)

$$d^2v = dv$$

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} -$$

 $m^2 + 3m + 2 = 0 \implies m = -2, -1$

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} +$$

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = e^{-2t} + 2t$$

Then the given equation (5) becomes

Example (Continued...)

The characteristic equation is

 $v_c(t) = (c_1 e^{-t} + c_2 e^{-2t})$

Thus, the complementary function $y_c(x)$ can be expressed as

(6)

$$y_p(t) = t(Ae^{-2t}) + Bt + C$$

$$y_p(t) = t(Ae^{-2t}) + Bt + C$$

 $y_p'(t) = -2t(Ae^{-2t}) + Ae^{-2t} + B$

$$y_p(t) = t(Ae^{-2t}) + Bt + C$$

$$y_p(t) = t(Ae^{-t}) + Bt + t$$

$$y_p(t) = t(Ae^{-2t}) + Bt + C$$

 $y_p'(t) = -2t(Ae^{-2t}) + Ae^{-2t} + B$

 $y_p''(t) = 4t(Ae^{-2t}) - 4(Ae^{-2t})$

$$v_p(t) = t(Ae^{-2t}) + Bt + C$$

$$y_{\beta}(t) = t(t)t \qquad y + Dt + 1$$

$$y_p'(t) = -2t(Ae^{-2t}) + Ae^{-2t} + B$$

$$^{t})+Ae^{-2t}$$

Substituting the value of $y_p(t), y_p'(t), y_p''(t)$ in (6)

$$-\Lambda(\Lambda_0^{-2t})$$

$$4(Ae^{-2t})$$

$$y_p''(t) = 4t(Ae^{-2t}) - 4(Ae^{-2t})$$

$$4(Ae^{-2t})$$

$$(Ae^{-2t})$$

 $-Ae^{-2t} + 2Bt + 3B + 2c = e^{-2t} + 2t$

Comparing the coefficients and solving we get, A = -1, B = 1 $C = \frac{-3}{2}$.

$$\therefore y_p(t) = -te^{-2t} + t - \frac{3}{2},$$

$$\therefore y_p(t) = -te^{-2t} + t - \frac{3}{2},$$

 $\therefore y(x) = (\frac{c_1}{x} + \frac{c_2}{y^2}) - \frac{\log x}{y^2} + \log x - \frac{3}{2}.$

the primitive is $y(t) = y_c(t) + y_p(t) = (c_1e^{-t} + c_2e^{-2t}) - te^{-2t} + t - \frac{3}{2}$,

A Different Form

A second order equation of the form

$$a(x - x_0)^2 \frac{d^2 y}{dx^2} + b(x - x_0) \frac{dy}{dx} + cy = 0$$
 (7)

is also a Cauchy-Euler equation. Observe that (7) reduces to (2) when $x_0 = 0$.

Example

Solve the initial value problem

on the interval $(-1, \infty)$.

Solution:

Let
$$1 + x = e^t$$
 or $t = \log(1 + x)$ then

$$1+x=e^t$$
 or $t=\log(1+x)$ then
$$(1+x)\frac{dy}{dx}=\frac{dy}{dt}; \ \ (1+x)^2\frac{d^2y}{dx^2}=\left(\frac{d^2y}{dt^2}-\frac{dy}{dt}\right)$$

Also, $log(1 + 2x + x^2) = log(1 + x)^2 = 2 log(1 + x)$

Let
$$1 + x = e^t$$
 or $t = \log(1 + x)$ then

 $(1+x)^2v'' + (1+x)v' - v = \log(1+2x+x^2), \ \ v(0) = 1, \ v'(0) = 3.$

(8)

Example

 $m^2 - 1 = 0$

Then the given equation (8) becomes

(9)

$$d^2v$$

The characteristic equation is

$$d^2y$$

Example

Then the given equation (8) becomes

$$\frac{a^{-}y}{dt^2}$$

$$m^2$$
 1 – 0 \longrightarrow m – 1 1

 $y_c(t) = (c_1 e^t + c_2 e^{-t})$

$$m^2-1=0 \implies m=1,-1$$

$$m^2 - 1 = 0 \implies m = 1, -1$$

Thus, the complementary function $y_c(x)$ can be expressed as

(9)

Example (Continued...) $y_p(t) = At + B$

$$y_p(t) = At + B$$

 $y'_p(t) = A$

$$y_p(t) = At + B$$

$$y_p'(t) = A$$
$$y_p''(t) = 0$$

$$y_p(t) = At + B$$

 $y_p''(t) = 0$

$$y_p'(t) = A$$

Substituting the value of $y_p(t), y_p'(t), y_p''(t)$ in (9)

Comparing the coefficients and solving we get, A = -2, B = 0.

-2A + At + B = t

Example (Continued...)
$$\therefore y_p(t) = -2t,$$

$$\therefore y_p(t) =$$

$$\therefore y_p(t) = -2t,$$

$$\therefore y_p(t) = -$$

the primitive is
$$y(t) = y_c(t) + y_p(t) = c_1 e^t + c_2 e^{-t} - 2t$$
.

 $y'(x) = c_1 - \frac{c_2}{(1+x)^2} - \frac{2}{(1+x)}$.

 $y(x) = c_1(1+x) + \frac{c_2}{(1+x)} - 2\log(1+x),$

value problem is

Using initial conditions y(0) = 1 and y'(0) = 3 we have

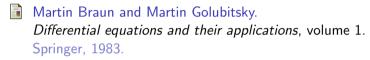
Using initial conditions
$$y(0) = 1$$
 and $y'(0) = 3$ we have

$$c_1 + c_2 = 1$$
: $c_1 - c_2 - 2 = 3$

solving which we get $c_1 = 3$ and $c_2 = -2$, and hence the solution of the initial

 $y(x) = 3(x+1) - \frac{2}{(1+x)} - \log(1+x)^2.$

References I



Richard Bronson.

Schaum's outline of theory and problems of differential equations.

McGraw-Hill, 1994.

EA Coddington. An introduction to ordinary differential equations, phi learning pvt. Ltd., New Delhi, 2012.

References II

Higher engg. mathematics, 2006.

George F Simmons.

Differential equations with applications and historical notes.

CRC Press, 2016.

Thank You