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Learning Outcomes

After studying this module you should be able to

1 Identify the Cauchy-Euler non-homogeneous DEs.
2 Write the Cauchy-Euler non-homogeneous DEs as linear DEs with

constant coefficients
3 Solve the the Cauchy-Euler non-homogeneous DEs of second order

using undetermined coefficients method.



Learning Outcomes

After studying this module you should be able to
1 Identify the Cauchy-Euler non-homogeneous DEs.

2 Write the Cauchy-Euler non-homogeneous DEs as linear DEs with
constant coefficients

3 Solve the the Cauchy-Euler non-homogeneous DEs of second order
using undetermined coefficients method.



Learning Outcomes

After studying this module you should be able to
1 Identify the Cauchy-Euler non-homogeneous DEs.
2 Write the Cauchy-Euler non-homogeneous DEs as linear DEs with

constant coefficients

3 Solve the the Cauchy-Euler non-homogeneous DEs of second order
using undetermined coefficients method.



Learning Outcomes

After studying this module you should be able to
1 Identify the Cauchy-Euler non-homogeneous DEs.
2 Write the Cauchy-Euler non-homogeneous DEs as linear DEs with

constant coefficients
3 Solve the the Cauchy-Euler non-homogeneous DEs of second order

using undetermined coefficients method.



Cauchy-Euler Equations

A linear differential equation of the form

anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ . . . a0y = g(x), (1)

where the coefficients an, an−1, . . . , a0 are constants, is known as a Cauchy-Euler
equation.

Note

The degree k = n, n − 1, . . . , 1, 0 of the monomial coefficients xk matches the

order k of differentiation dky
dxk

.



Second order Non-homogeneous Cauchy-Euler DEs

Consider second order non-homogeneous Cauchy-Euler equation

ax2
d2y

dx2
+ bx

dy

dx
+ cy = Q(x), (2)

where a, b, and c are constants.



Method

To reduce equation (2) to the linear homogeneous differential equation with
constant coefficients. Substitute x = et or t = log x . Then
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Steps to find the solution

1 Reduce the equation (2) to linear DE with constant coefficients.

2 Find the general solution of the homogeneous Euler equation i.e yc.

3 Using the method of undetermined coefficients or the method of variation
of parameters, find a particular solution depending on the right side of the
given non-homogeneous DE i.e. yp.

4 The general solution of equation (2) is

y = yc + yp



Example (1)

Find the general solution of the differential equation:
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Example (Continued...)

Then the given equation (3) becomes

d2y

dt2
− 2

dy

dt
+ y = t. (4)

The characteristic equation is

m2 − 2m + 1 = 0

=⇒ m = 1, 1

Thus, the complementary function yc(x) can be expressed as
yc(t) = (c1 + c2t)et
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yp(t) = At + B

y ′p(t) = A

y ′′p (t) = 0
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Example (Continued...)

∴ yp(t) = t + 2,

the primitive is y(t) = yc(t) + yp(t) = (c1 + c2t)et + t + 2.

∴ y(x) = (c1 + c2 log x)x + log x + 2.
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2 ,
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A Different Form

A second order equation of the form

a(x − x0)2
d2y

dx2
+ b(x − x0)

dy

dx
+ cy = 0 (7)

is also a Cauchy-Euler equation.Observe that (7) reduces to (2) when x0 = 0.



Example

Solve the initial value problem

(1 + x)2y ′′ + (1 + x)y ′ − y = log(1 + 2x + x2), y(0) = 1 y ′(0) = 3, (8)

on the interval (−1,∞).
Solution:
Let 1 + x = et or t = log(1 + x) then

(1 + x)
dy

dx
=

dy

dt
; (1 + x)2

d2y

dx2
=

(
d2y

dt2
− dy

dt

)
Also, log(1 + 2x + x2) = log(1 + x)2 = 2 log(1 + x)
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Example (Continued...)

Using initial conditions y(0) = 1 and y ′(0) = 3 we have

c1 + c2 = 1; c1 − c2 − 2 = 3

solving which we get c1 = 3 and c2 = −2, and hence the solution of the initial
value problem is

y(x) = 3(x + 1)− 2

(1 + x)
− log(1 + x)2.
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