Quadrant II – Transcript and Related Materials

Programme: Bachelor of Science

Subject: Mathematics

Paper Code: MTC105

Paper Title: Algebra

Unit: 1

Module Name: Subgroups Example-Part III (Centralizer of an element of a Group)

Module No: 13

Name of the Presenter: Ms. Namrata Naik (Assistant Professor)

Notes

Centralizer of *a* in *G*:

Let *a* be a fixed element of a group *G*. The centralizer of *a* in *G*, C(a), is the set of all elements in *G* that commute with *a*.

In symbols,

$$C(a) = \{x \in G \mid ax = xa\}$$

Examples:

- 1. Centralizer of $a \in (U(n), \cdot_n)$, C(a) = U(n). For every $a \in U(n)$, $a \cdot_n b = b \cdot_n a$, $\forall b \in U(n)$ Hence, C(a) = U(n).
- 2. Centralizer of $I_n \in GL(n, \mathbb{R})$, $C(I_n) = GL(n, \mathbb{R})$.

$$AI_n = I_n A \quad \forall A \in GL(n, \mathbb{R})$$

Hence, $C(I_n) = GL(n, \mathbb{R}).$

3. Centralizer of $i \in \mathbb{Q}_8$ is $\{1, -1\}$.

 \mathbb{Q}_8 is a Quaternion Group defined as follows

 $\mathbb{Q}_8 = \{\pm 1, \pm i, \pm j, \pm k\}$

Here binary operation \cdot is defined as

$$\begin{split} i^2 &= j^2 = k^2 = -1, i \cdot j = k = -(j \cdot i), j \cdot k = i = -(k \cdot j), k \cdot i = j = -(i \cdot k), \\ 1 \cdot x &= 1 = x \cdot 1 \quad \forall \, x \in \mathbb{Q}_8, \quad -1 \cdot x = -x = x \cdot -1 \quad \forall \, x \in \mathbb{Q}_8 \end{split}$$

 $\Rightarrow y^{-1} \in C(a).$

Therefore, $C(i) = \{1, -1\}$ and $C(-1) = \mathbb{Q}_8$

Properties:

➤ The centralizer of a in a group G is a subgroup of G.
Identity $e \in C(a)$ as ea = ae, $\forall a \in G \Longrightarrow C(a) \neq \emptyset$.
Let $x, y \in C(a) \implies xa = ax$ and ya = ay $\implies y^{-1}yay^{-1} = y^{-1}ayy^{-1}$ $\implies ay^{-1} = y^{-1}a$

Consider,

$$(xy^{-1})a = x(y^{-1}a)$$

= $x(ay^{-1})$
= $(xa)y^{-1}$
= $(ax)y^{-1}$
= $a(xy^{-1})$

Hence, $xy^{-1} \in C(a)$.

Thus, by one step subgroup test, C(a) is a subgroup of G.

If G is an abelian group then for a ∈ G, C(a) = G.
 C(a) ⊆ G.

Let $x \in G$ then $xy = yx \forall y \in G$ (since *G* is abelian) In particular, xa = ax $\Rightarrow x \in C(a)$. Therefore, $G \subseteq C(a)$. Hence, C(a) = G.

For a ∈ G, C(a) need not be an abelian group.
 Centralizer of I_n ∈ GL(n, ℝ), C(I_n) = GL(n, ℝ) (as shown in example 4)
 But GL(n, ℝ) is not abelian.

Let G be a group then Z(G) = ∩_{a∈G} C(a).
Let x ∈ ∩_{a∈G} C(a) ⇒ x ∈ C(a) ∀ a ∈ G
⇒ xa = ax ∀ a ∈ G
⇒ x ∈ Z(G)
⇒ ∩_{a∈G} C(a) ⊆ Z(G)
Now, let x ∈ Z(G) ⇒ xa = ax ∀ a ∈ G
⇒ x ∈ C(a), ∀ a ∈ G
⇒ x ∈ ∩_{a∈G} C(a)
⇒ Z(G) ⊆ ∩_{a∈G} C(a)
Hence, Z(G) = ∩_{a∈G} C(a).